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ABSTRACT. Several papers in the recent literature have studied factorization properties of
affine monoids using the monoid’s Betti elements. In this paper, we extend this study to
more general rings and monoids. We open by demonstrating the issues with computing the
complete set of Betti elements of a general commutative cancellative monoid, and as an ex-
ample compute this set for an algebraic number ring of class number two. We specialize our
study to the case where the monoid has a single Betti element, before examining monoids with
full atomic support (that is, when each Betti element is divisible by every atom). For such a
monoid, we show that the catenary degree, tame degree, and omega value agree and can be
computed using the monoid’s set of Betti elements. We close by considering Betti elements
in block monoids, giving a ”Carlitz-like” characterization of block monoids with full atomic
support and proving that these are precisely the block monoids having a unique Betti element.

1. INTRODUCTION

The study of various properties related to nonunique factorizations of elements in com-
mutative rings and monoids has been an active area of research in algebra, combinatorics,
and number theory over the past 40 years. One specific area of interest has been the com-
putation of various combinatorial constants which help describe the nonunique arithmetic
of many classes of integral domains and monoids. In [8], the authors show that several
of these constants can be computed (and in some cases are even equal) on a monoid S by
only considering the Betti elements of S. For many affine monoids (in particular, numerical
monoids) this made the computation of constants such as the catenary and tame degrees
into a finite time problem. Hence, over the last decade several papers (see for example
[5, 7, 9, 11, 20, 22, 23, 30]) consider issues where Betti elements play a key role. Most of
these papers focus on the study of Betti elements in affine or finitely generated commuta-
tive monoids. In this paper, we generalize this study and consider Betti elements in various
types of rings and monoids. We investigate their structure and properties, as well as their
use for determining factorizations properties of their base structures. In particular, we con-
sider monoids S where each Betti element is divisible by each atom of S and denote these
monoids as having full atomic support. We show the relationship between full atomic sup-
port and two properties explored in the recent literature: the single Betti element case, and
the length factorial case, in the diagram below. We also offer examples that illustrate that
these implications cannot be reversed.

(1) S is length factorial =⇒ S has at most
one Betti element =⇒ S has full atomic support.

We begin in Section 2 by offering the necessary background and definitions. We argue
(in Proposition 2.1) that a monoid S is half-factorial if and only if each Betti element of S is
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half-factorial. In Section 3, we offer many examples of the computation of the complete set of
Betti elements in various types of monoids. We offer particular focus on block monoids and
algebraic number rings of class number two. In Section 4, we focus on monoids that admit
only one Betti element. We argue (in Lemma 4.2) that the Betti element in such a monoid
determines a partition of the set of atoms of S. In Theorem 4.5, we characterize monoids
with one Betti element b via the multiplicity of the atoms that appear in various irreducible
factorizations of b (we define this multiplicity as the multiplicative shadow of S). We show
in Theorem 4.6 that any possible multiset of positive integers appears as the multiplicative
shadow of a monoid with one Betti element. Section 4 closes (in Theorem 4.7) by showing
that a length factorial monoid is merely a monoid with a single Betti element that has exactly
two irreducible factorizations which have differing length.

In Section 5, we explore the notion of full atomic support. An element x ∈ S has full atomic
support if it is divisible by each atom of S; we say that S has full atomic support if each Betti
element of S has full atomic support. In Proposition 5.4, we show that the Betti elements
in a monoid with full atomic support are incomparable under the divisibility order. This
eventually leads to an argument (Lemma 5.7, Lemma 5.8, and Theorem 5.9) showing that in
a monoid S with full atomic support, the catenary degree, the tame degree, and the omega
values are all equal and can be computed using the set of Betti elements of S. Section 6 looks
more closely at the set of Betti elements of certain block monoids. Using some technical
constructions grounded in Lemma 6.1, Lemma 6.2, and Theorem 6.3, we offer in Corollary 6.4
a “Carlitz-like” characterization of block monoids with full atomic support.

2. BASIC FACTS AND DEFINITIONS

Let N represent the positive integers, N0 the nonnegative integers, and (S,+) a commu-
tative monoid. We say S is cancellative if a+ b = a+ c implies b = c for all a, b, c,∈ S, and that
S is reduced if the only unit in S is its identity element. We say that a ∈ S is an atom if a = b+ c
for some b, c ∈ S implies b or c is a unit, and we say that S is atomic if every nonzero nonunit
element of S can be written as a sum of atoms. Suppose S is cancellative and reduced. Given
a, b ∈ S, we write a ≤S b and say “a divides b in S” if there exists c ∈ S such that a + c = b
(equivalently, b ∈ a + S). The binary relation ≤S, called the divisibility order on S, is a partial
order on S (reflexive since 0 ∈ S, transitive since S is a monoid, and anti-symmetric since S
is cancellative and reduced). We will write a <S b when a ≤S b and a ̸= b.

In the study of non-unique factorization, it is common to restrict to the case of reduced
monoids (see the discussion after [24, Definition 1.2.6]). Hence, throughout the remainder of
this manuscript, unless otherwise stated, all monoids are assumed to be atomic, cancellative,
commutative, and reduced. Additionally, we restrict our attention to monoids satisfying
the ascending chain condition on principal ideals (ACCP), that is, its divisibility order does
not contain infinite descending chains (we will see in Example 3.6 the motivation for this
assumption).

If A(S) is the set of atoms of S, then we know that ⟨A(S)⟩ = S. We say that a ∈ A(S) is
prime if whenever a ≤S b + c for some b, c ∈ S, either a ≤S b or a ≤S c. Let F (A(S)) be the
free (commutative) monoid over A(S), which we can identify with N

(A(S))
0 , and

(2) φ : F (A(S)) → S, a ∈ A 7→ a,

be the factorization morphism of S. For s ∈ S, denote by Z(s) the set of factorizations of s,
that is, Z(s) = φ−1(s). If z ∈ Z(s) with z = n1a1 + · · ·+ nkak for distinct atoms ai and natural
numbers nj, then we call |z| = n1 + · · ·+ nk the length of z.
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Let P be the set of prime elements of S, and let T = S \ (⋃a∈P a+ S). By [24, Theorem 1.2.3],
T is a submonoid of S and S is isomorphic to F (P) × T. If N = A(S) \ P, then N ⊆ T.
If s ∈ T, then s = ∑a∈A(S) saa, and as s ̸∈ ⋃

a∈P a + S, we deduce that sa = 0 for all a ∈ P.
Thus, s ∈ ⟨N⟩. This proves that T = ⟨N⟩, that is,

S ≃ F (P)× ⟨A(S) \ P⟩.
Thus, the study non-unique factorizations focuses on ⟨A(S) \ P⟩ and, without loss, we can
normally assume that our monoid S does not have prime elements.

The kernel ker(φ) is an equivalence relation ∼ on F (A(S)) with z ∼ z′ whenever φ(z) =
φ(z′). That is, whenever z and z′ are factorizations of the same element of S. In fact, ker(φ) is
a congruence, meaning z ∼ z′ implies z + z′′ ∼ z′ + z′′ for all z, z′, z′′ ∈ F (A(S)). This ensures
the set F (A(S))/ ker(φ) of equivalence classes of ker(φ) inherits a monoid operation from
F (A(S)), and is naturally isomorphic to S. A presentation of S is a system of generators of
ker(φ) (as a congruence). A presentation σ is minimal if no proper subset of σ generates
ker(φ).

We define the atomic support of s ∈ S, written AS(s) = {a ∈ A(S) : s ∈ a + S}, as the set of
atoms which divide s. If x is an atom, then AS(x) = {x}. For z ∈ Z(s), we similarly define its
support as supp(z) = {a ∈ A(S) : za ̸= 0}. Note that AS(s) =

⋃
z∈Z(s) supp(z). Unlike AS(s),

observe that supp(y + z) = supp(y) ∪ supp(z), and in particular that supp(z) = supp(kz)
for every positive integer k.

An element s ∈ S is said to be a Betti element if there exists a partition AS(s) = A1 ∪ · · · ∪
An, with n an integer greater than one, such that for any factorization z of s, there exists
i ∈ {1, . . . , n} so that supp(s) ⊆ Ai. The set of the Betti elements of S is denoted by Betti(S).

Betti elements can also be viewed using graph theory. For s ∈ S, let ∇s be the graph with
vertices Z(s), and whose edges are the pairs (x, y) such that x · y ̸= 0 (that is, edges join
factorizations having atoms in common; here x · y denotes the dot product of x and y). The
connected components of ∇s are called the R-classes of s. Observe that the Betti elements of
S are precisely those elements with at least two R-classes. Notice that if S has finitely many
atoms (S is finitely generated), then S admits a finite presentation by Rédei’s Theorem [32],
and thus S has finitely many Betti elements.

Betti elements and their R-classes can be used to characterize the minimal presentations
of S, and, thus, they are widely studied in the theory of commutative monoids (see for in-
stance [4, 7, 23, 29]). According to [4], if S satisfies the ACCP, a minimal presentation of S
can be constructed from its Betti elements as follows. Let (Xi, Yi), i ∈ I be the edges of a tree
whose vertices are the connected components of ∇b. Pick xi ∈ Xi and yi ∈ Yi for all i ∈ I
and set ρ(b) = {(xi, yi) : i ∈ I}. Then, ρ =

⋃
b∈Betti(S) ρ(b) is a minimal presentation of S (see

[20] for more details) and all minimal presentations have this form. Note that the ACCP is
critical for this process to yield a presentation; see Example 3.6 for a demonstration of what
can occur in its absence.

We say a non-unit s ∈ S in an atomic monoid S is half-factorial if all factorizations of s have
equal length, and that S is half-factorial if every s ∈ S is half-factorial [24, Section 6.7]. The
following result can be seen as a non-finitely generated version of [34, Proposition 22] and
[22, Lemma 1.2]. For monoids in which every element has a finite set of distinct factorization
lengths, the statement follows from [7, Theorem 2.5].

Proposition 2.1. A monoid S is half-factorial if and only if every Betti element of S is half-factorial.

Proof. One direction is trivial. For the other, assume that every element of Betti(S) is half-
factorial. Let s ̸= 0 be in S and let u, v ∈ Z(s). By [4, Theorem 1] there is some chain of
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factorizations u = z1, z2, . . . , zt = v, where (zi, zi+1) = (ai + ci, bi + ci) and φ(ai) = φ(bi) ∈
Betti(S), where φ is defined as in (2). For each i, we have |zi| = |ai|+ |ci| = |bi|+ |ci| = |zi+1|,
since ϕ(ai) is half-factorial. Hence |u| = |v|. □

3. MOTIVATING EXAMPLES

In this section, we present several families of monoids that will be used throughout the
manuscript.

Example 3.1. Suppose n1 < n2 < · · · < nk are positive integers, with gcd(n1, . . . , nk) = 1.
The monoid

S = ⟨n1, n2, . . . , nk⟩ = {z1n1 + · · ·+ zknk : z1, . . . , zk ∈ N0} ⊆ (N0,+)

is called a numerical monoid whose atoms are n1, n2, . . . , nk. The embedding dimension of S is
e(S) = k ≥ 2 and its multiplicity is m(S) = n1. As described above, the computation of the
Betti elements of S is closely related to the computation of a minimal presentation of S. By
[33, Corollary 8.27], the size of such a minimal presentation is at most

(3) 1
2 m(S)(m(S)− 1)

and hence, this figure is also an upper bound on the number of Betti elements of S. If S is of
maximal embedding dimension (that is, if e(S) = m(S)), then the upper bound (3) for the
size of the minimal presentation is attained (see [33, Lemma 8.29]). Thus, for such an S, any
Betti element b is the sum of two atoms of S (see [33, Proposition 8.19]). For instance, if t ≥ 2,
then

S = ⟨t, t + 1, . . . , 2t − 1⟩ has Betti(S) = {2t, 2t + 1, . . . , 4t − 2}.

We note the special case when k = 3 above (that is, S = ⟨n1, n2, n3⟩). By a fundamental
result of Herzog [29], the cardinality of a minimal presentation in this case is at most three
and hence, such an S has at most three Betti elements. We look at conditions which determine
each possibility.

(1) One Betti Element: Here S = ⟨k1k2, k1k3, k2k3⟩ and Betti(S) = {k1k2k3}, where
k1, k2, k3 are pairwise relatively prime positive integers (see [23, Example 12]).

(2) Two Betti Elements: In this case, S = ⟨am1, am2, bm1 + cm2⟩ where 1 < m1 < m2
are relatively prime integers, a, b, and c are nonnegative integers with a ≥ 2, b +
c ≥ 2 and gcd(a, bm1 + cm2) = 1. Here S is symmetric and Betti(S) = {a(bm1 +
cm2), am1m2} (see [33, Theorem 10.6] and [21, Theorem 6]).

(3) Three Betti Elements: Here S is nonsymmetric and the generators n1, n2, and n3
entail all possibilities not covered in the first two cases.

Example 3.2. As demonstrated above, the question of finding the set Betti(S) for a monoid S
is largely a computational problem. There are recent cases in the literature where this set is
precisely described for particular monoids. A positive monoid S is a submonoid of the additive
monoid of nonnegative real numbers. A positive monoid consisting entirely of rationals is
known as a Puiseux monoid. Let q be a non-integer positive rational such that q−1 ̸∈ N, and
let n(q) and d(q) represent respectively the numerator and denominator of q when written
in lowest terms. Let Sq := ⟨qn : n ∈ N0⟩ be the Puiseux monoid generated by the powers
of q (see [11, Example 4.6]). By [27, Theorem 6.2] and [14, Theorem 4.2], Sq is atomic and
A(Sq) = {qn : n ∈ N0}. It follows from [1, Lemma 4.3] that

Betti(Sq) = {n(q)qn : n ∈ N0} .
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Let N0[X] represent the semiring of polynomials with nonnegative integer coefficients. If
α is a positive real number, then let N0[α] = {p(α) : p(X) ∈ N0[X]}. It follows that N0[α]
is a positive monoid generated over N0 by the powers of α. If q is a positive rational that is
neither an integer nor the reciprocal of an integer, and α = n

√
q a positive irreducible nth root

of q, then Proposition 4.4 in [1] shows that

Betti(N0[α]) =

{
n(q)m+1

d(q)m · αr : m ∈ N0 and r ∈ {0, 1, . . . , n − 1}
}

.

Example 3.3. Let G be an abelian group and let F (G) denote the free abelian monoid on G.
Define eval : F (G) → G by

eval

(
∏
g∈G

gαg

)
= ∑

g∈G
αgg,

where the addition takes place in G. The set

B(G) = {x ∈ F (G) : eval(x) = 0}
is a submonoid of F (G) called the block monoid on the abelian group G. Block monoids
play a key role in the theory of non-unique factorizations (see [24, Sections 2.5, 3.4]). If G
is finite, then B(G) is an affine monoid and for relatively small G, the computation of their
Betti Elements can be handled using the GAP [18] package numericalsgps [17]. We note that
both B({e}) and B(Z2) are factorial monoids and admit no Betti elements. We list the results
for B(Z3), B(Z2 ⊕ Z2), and B(Z4) in the following table.

G Defining equations of B(G) Minimal Generators for Betti Elements
as an affine monoid in Nk

0 B(G) of B(G)

Z3 x1 + 2x2 ≡ 0 (mod 3) (0, 3), (3, 0), (1, 1) (3, 3)

Z2 ⊕ Z2 x1 + x3 ≡ 0 (mod 2), (2, 0, 0), (0, 2, 0), (2, 2, 2)
x2 + x3 ≡ 0 (mod 2) (0, 0, 2), (1, 1, 1)

Z4 x1 + 2x2 + 3x3 ≡ 0 (mod 4) (0, 0, 4), (0, 1, 2), (0, 2, 4), (2, 1, 4),
(1, 0, 1), (2, 1, 0), (4, 0, 4), (4, 1, 2),
(0, 2, 0), (4, 0, 0) (2, 2, 2), (4, 2, 0)

As one might expect, the number of Betti elements of B(G) increases rapidly with the size
of G (GAP shows that B(Z3

2) admits 99 Betti elements). In fact, examples obtained using
GAP lead to the following conjecture.

Conjecture 3.4. Let G and G′ be finite abelian groups of order greater than 2. Apart from Z3 and
Z2 ⊕ Z2 above, if G ̸∼= G′, then the number of Betti elements of B(G) and B(G′) are different.

Given s ∈ S, we say that a factorization x ∈ Z(s) is isolated if it is disjoint with every other
factorization of s, that is, the R-class of x in ∇s is a singleton. It easily follows that if s is an
element of S having an isolated factorization, then either Z(s) is a singleton, or s is a Betti
element. Isolated factorizations will play a central role in many of the key results throughout
the remainder of this manuscript.

Example 3.5. Let D be the ring of integers in a finite extension of the rationals with class
number two. The ring D is a well-known half-factorial domain [6], and we compute its
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complete set of Betti elements. Note that if an element x ∈ D is divisible by a prime element,
then its factorization graph is connected, and hence x is not a Betti element.

So let x be a nonzero non-unit of D that is not divisible by a prime and (x) the principal
ideal it generates in D. As D is a Dedekind domain, the ideals of D factor uniquely as a
product of prime ideals. Hence, we have in D that (x) = P1 · · · Pk where the Pi’s are non-
principal prime ideals. Since the class number is 2, a nonprime irreducible δ of D yields an
ideal factorization into prime ideals of the form (δ) = P1P2. Hence the k above must be even.
If x is a Betti element, then we argue that k = 4.

If k = 2, then x is irreducible and not a Betti element. Hence, k ≥ 4. Suppose that k > 4
and x has more than one factorization, say

x = α1 · · · αt = β1 · · · βt

where t ≥ 3 (both factorizations have the same length because D is half-factorial). If we
set z = α1 · · · αt and z′ = β1 · · · βt, then either z and z′ share an atom, or we construct a
factorization z′′ that shares atoms with z and z′. In either case, this will place them in the
same connected component of ∇x.

Suppose z and z′ do not share an atom. Decompose the ideal (x) into prime ideals as
follows,

(x) = (α1) · · · (αt) = (Pi1 Pi2) · · · (Pik−1 Pik)

and
(x) = (β1) · · · (βt) = (Pj1 Pj2) · · · (Pjk−1 Pjk).

Since k ≥ 6, there must be some s, t /∈ {i1, i2} with (PsPt) = (β j) for some j. So (Pi1 Pi2)(PsPt)
can be extended to another factorization of (x) and hence to another factorization z′′ of x.
But now z and z′′ share the atom α1 (where (α1) = (Pi1 Pi2)), while z′′ and z′ share the atom γ
(where (γ) = (PsPt)). Thus, ∇x is connected and x is not a Betti element.

Hence k ≤ 4 and is even. As previously noted, k > 2, hence k = 4. If Q1, Q2, Q3, and Q4
are now distinct nonprincipal prime ideals of D, we have several possibilities for x.

(1) (x) = Q4
1. Here x is the square of strong atom and has only one factorization. Hence

x is not a Betti element.
(2) (x) = Q3

1Q2. Here x = γ1γ2, where (γ1) = Q2
1 and (γ2) = Q1Q2, is the only irre-

ducible factorization of x, and hence x is not a Betti element.
(3) (x) = Q2

1Q2
2. In this case, there are two factorizations,

x = δ1δ2 = η2

where (δ1) = Q2
1, (δ2) = Q2

2, and (η) = Q1Q2. As these factorizations are isolated, x
is a Betti element.

(4) (x) = Q2
1Q2Q3. If Q2Q3 = (θ) and Q1Q3 = (κ), then the only two irreducible factor-

izations of x are
x = γ1θ = ηκ.

As these are isolated, x again is a Betti element.
(5) (x) = Q1Q2Q3Q4. Here we have three irreducible factorizations of x. They are

x = ηλ = κµ = σθ,

where (λ) = Q3Q4, (µ) = Q2Q4, and (σ) = Q1Q4. As these factorizations are all
isolated, x is again a Betti element.
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Options (3), (4), and (5) above yield the complete set of Betti elements of D. Hence,

Betti(D) = {x : (x) = Q2
1Q2

2 where Q1, Q2 are distinct nonprincipal prime ideals}
∪ {x : (x) = Q2

1Q2Q3 where Q1, Q2, and Q3 are distinct nonprincipal prime ideals}
∪ {x : (x) = Q1Q2Q3Q4 where Q1, Q2, Q3 and Q4 are distinct nonprincipal prime ideals}.

An argument very similar to this can be used to compute the complete set of Betti elements
in any Krull domain with divisor class group Z2. It also illustrates the difficulty in such a
calculation should the divisor class group have large order.

We close this section with an example that demonstrates the necessity of assuming that
our monoids satisfy the ACCP condition.

Example 3.6. Without the ACCP assumption, the relations occurring at Betti elements need
not form a presentation. Indeed, consider the monoid S = ⟨x0, x1, . . . , y0, y1, . . . , A, B, C⟩,
with relations

(a) (2xi, A + 2xi+1), (b) (2yi, A + 2yi+1), and (c) (B + 2xi, C + 2yi)

for i ≥ 0. Although the given relations occur at the elements

bi = 2xi = A + 2xi+1 = 2A + 2xi+2 = · · · , b′i = 2yi = A + 2yi+1 = 2A + 2yi+2 = · · · ,

and

b′′i = B + bi = B + 2xi = B + A + 2xi+1 = B + 2A + 2xi+2 = · · ·
= C + b′i = C + 2yi = C + A + 2yi+1 = C + 2A + 2yi+2 = · · · ,

respectively, none of the b′′i are Betti elements. Indeed, the relations (a) connect the first row
of factorizations for b′′i above, while the relations (b) connect the factorizations in the second
row. However, since some factorizations in each row have A in their atomic support, the
factorization graph of b′′i is connected, despite the fact that without the relations (c), there is
no way to connect from the first row of factorizations to the second row.

The underlying issue is that b1, b2, . . . form an infinite descending chain in the divisibility
order of S, thereby violating the ACCP. As a result, some factorizations in the same R-class
need not be connected by a chain of relations occurring at Betti elements. Note that the
relations specified in (a), (b), and (c) form a presentation for M, so the bi and b′i are the only
Betti elements of M, and thus by the above argument, any presentation of M contains some
relation not occurring at a Betti element.

In view of this example, we make explicit use of the ACCP in the proof of Lemma 4.1(a),
which is central to the rest of the paper, ensuring this phenomenon cannot occur in monoids
satisfying the ACCP.

4. MONOIDS WITH ONE BETTI ELEMENT

We now begin to explore the case where the monoid S contains exactly one Betti element.
Finitely generated monoids with a single Betti element were studied in [20]. The next result
is a technical lemma that will be used several times later in this manuscript. Compare the
second statement with [20, Lemma 3.12].

Lemma 4.1. Let S be a monoid.
(a) Let a be an atom of S. If a is not a prime, then there exists a Betti element b of S such that

a ≤S b.
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(b) Suppose b, c are both Betti elements and b <S c. Then there is some z ∈ Z(c) with supp(z)∩
AS(b) = ∅. In particular, there must be some atom a ∈ A(S) with a ≤S c and a ̸≤S b.

Proof. (a) Since a is not prime, there exists x, y ∈ S such that a ≤S x+ y and neither a ≤S x nor
a ≤S y. This means that x + y ∈ a+ S, and consequently there exists a factorization z of x + y
such that a is in the support of z. As x ̸∈ a + S and y ̸∈ a + S, the atom a is not in the support
of any of the factorizations of x and y. Let u and v be factorizations of x and y, respectively.
Then, u + v is a factorization of x + y. It follows that (z, u + v) ∈ ker(φ). Let σ be a minimal
presentation of ker(φ). There exists a chain of factorizations z1, . . . , zt such that z1 = z,
zt = u + v, and (zi, zi+1) = (ai + ci, bi + ci) for some (ai, bi) ∈ F (A(S))2 and ci ∈ F (A(S))
such that either (ai, bi) ∈ σ or (bi, ai) ∈ σ (in particular φ(ai) = φ(bi) ∈ Betti(S), with φ
as in (2); see [4, Theorem 1], which requires S to satisfy the ACCP). As a ∈ supp(z) and
a ̸∈ supp(u + v), there exists i ∈ {1, . . . , t} such that a ∈ supp(zi) and a ̸∈ supp(zi+1). This
forces a ̸∈ supp(ci), and so a ∈ supp(ai) ∪ supp(bi). In particular, a ≤S φ(ai) ∈ Betti(S).

(b) Assume otherwise by way of contradiction. Then, every element of Z(c) shares at least
one atom with AS(b). Because c is a Betti element, it must have z1, z2 ∈ Z(c) with z1, z2 in
different connected components of ∇c. Now, let z′1 ∈ Z(b) such that supp(z1) ∩ supp(z′1) ̸=
∅, and similarly let z′2 ∈ Z(b) such that supp(z2) ∩ supp(z′2) ̸= ∅. Because b <S c there is
some d ∈ S, d ̸= 0, with b + d = c. Choose any z0 ∈ Z(d). Now we have a chain in Z(c) as:
(z1)− (z′1 + z0)− (z′2 + z0)− (z2), where each factorization shares at least one atom with the
next. Hence z1, z2 are in the same connected component of ∇c, a contradiction. □

Hence, by part (a) above, a monoid with a single Betti element has full atomic support, and
the second implication in (1) holds. Moreover, part (a) also allows us to prove this further
property regarding the atoms in the single Betti element case.

Lemma 4.2. Let S be a monoid such that Betti(S) = {b}, and suppose that S contains no primes.
Call the factorizations of b by Z(b) = {xi : i ∈ I}. Define Ai = supp(xi). Then, {Ai}i∈I forms a
partition of A(S).

Proof. By Lemma 4.1(a), every a ∈ A(S) verifies a ≤S b. Hence A(S) =
⋃

Ai. Since there is
only a Betti element b, this Betti element is minimal and by [20, Proposition 3.6] all its factor-
izations are isolated. In particular, the sets Ai, which are the support of these factorizations,
are disjoint. □

Example 4.3. It is easy to show that the second implication in (1) is not reversible. Let S =
⟨3, 5, 7⟩. Then, Betti(S) = {10, 12, 14}, and for all b ∈ Betti(S) and all a ∈ A(S), b − a ∈ S.

We note that the phenomenon of Example 4.3 arises with every monoid with a generic pre-
sentation, i.e. all of whose atoms occur in all minimal relations. They are uniquely presented,
as shown in [5, Proposition 5.5]).

We now consider a factorization z = ∑i∈I niai of an element d, where the ai are atoms
and ni are positive integers (and thus I has finitely many elements). Define the multiplicity
multiset of z as M(z) = [ni]i∈I , where multiplicity is kept, but the elements are unordered.
For example M(3a + 3b + c) = [3, 3, 1] = [1, 3, 3].

Let S be a monoid with notation as in Lemma 4.2. For each xi ∈ Z(d), define Mi = M(xi),
a multiset of positive integers. Call the set of these,

MS(d) = {Mi},

the multiplicity shadow of d. For example, if d = a + b = 3c + 2d + 3e are the only two
irreducible factorizations of d, then MS(d) = {[1, 1], [2, 3, 3]}.
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Example 4.4. Letting S = ⟨6, 10, 15⟩, we have

MS(30) = {[5], [3], [2]} and MS(55) = {[5, 1, 1], [4, 1], [1, 3]}.

In the one Betti element case, we now show that this multiplicity shadow determines the
monoid up to isomorphism.

Theorem 4.5. Let S, T be cancellative, reduced, atomic, prime-free monoids, with Betti(S) = {dS}
and Betti(T) = {dT}. Suppose that MS(dS) = MS(dT). Then, S is isomorphic to T.

Proof. We first construct a bijection τ from A(S) to A(T). Note that since MS(dS) = MS(dT),
we must have |MS(dS)| = |MS(dT)|, so |Z(dS)| = |Z(dT)|. Now, reorder Z(dT) if necessary,
so that Z(dS) = {x1, x2, . . .}, Z(dT) = {y1, y2, . . .}, and M(xi) = M(yi) for all i. Next, for
any i, consider xi = ∑j≥1 njaj and yi = ∑j≥1 n′

jbj, where the aj are atoms of S and bj are
atoms of T. Reorder the aj, bj if necessary so that n1 ≤ n2 ≤ · · · and n′

1 ≤ n′
2 ≤ · · · . Since

M(xi) = M(yi), after this reordering we in fact must have n′
j = nj for all j. We now define a

partial bijection τ from S to T via τ(aj) = bj. We repeat this process for each i. By Lemma 4.2,
every atom of S appears in just one xi, and each atom of T appears in just one yi, so these
partial bijections combine into a full bijection τ from A(S) to A(T).

Second, we claim τ can be extended to a surjective homomorphism f : S → T. Lin-
early extend τ to an isomorphism ψ : F (A(S)) → F (A(T)). Let φS : F (A(S)) → S and
φT : F (A(T)) → T be the factorization homomorphisms of S and T, respectively. According
to [28, Proposition 2.4], there is a unique morphism f : S → T satisfying f ◦ φS = φT ◦ ψ,
provided we ensure ker(φS) ⊆ ker(φT ◦ ψ). Indeed, by the construction of τ, for each i we
have ψ(xi) = yi, so ψ induces a bijection Z(dS) → Z(dT). As such, applying ψ to each rela-
tion (xi, xj) ∈ ker(φS) in a minimal presentation for S yields (yi, yj) ∈ ker(φT). This ensures
ker(φS) ⊆ ker(φT ◦ ψ), thereby proving the claim.

Lastly, applying the preceding paragraph to τ−1 yields a homomorphism g : T → S.
However, g ◦ f and f ◦ g are the identity maps on S and T, respectively, since they restrict
to the identity maps on A(S) and A(T), respectively. This implies f is an isomorphism, and
the proof is complete. □

A multiplicity multiset of a non-irreducible x cannot be a single 1, that is, M(x) = [1],
since that would suggest that x is in fact an irreducible. Any other multiplicity multiset is
possible, and indeed we now show that any multiplicity shadow is possible.

Theorem 4.6. Let MS = {M1, M2, . . .} be a nonempty set containing multisets Mi, where each Mi
is a finite nonempty multiset of positive integers, not equal to [1]. Then, there is a monoid S with
single Betti element d whose multiplicity shadow satisfies MS(d) = MS.

Proof. Let I = {i : Mi ∈ MS} be the set of indices appearing in the multisets Mi; note
that I might be infinite. For each i, let n(i) denote the number of integers appearing in Mi.
We now define T as the free abelian monoid with atoms ai,j, where i ∈ I and 1 ≤ j ≤ n(i).

For each Mi ∈ MS, write Mi = {m1, m2, . . . , mn(i)}. Define di = ∑n(i)
j=1 mjai,j, and let S be the

quiotient of T by the congruence generated by {(d1, di) : i ∈ I}. Then, in S, each factorization
d1, d2, . . . occurs at the same element d, and by construction, each factorization of d is built
from different atoms, so d is the unique Betti element. □

The one Betti element case is closely related to a factorization property that has been stud-
ied widely in the recent literature (see [10, 15, 26]). If for each s ∈ S and each distinct pair of
factorizations z1 and z2 taken from Z(s) we have |z1| ̸= |z2|, then S is called a length-factorial
monoid.
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Theorem 4.7. Let S be a monoid that is not factorial. The following statements are equivalent.
(1) S is length factorial.
(2) S has one Betti element with exactly two factorizations each of different length.

Proof. If S is length factorial and it is not factorial, then it has a single Betti element, say d ([10,
Proposition 3.5]). We know that ker(π) is generated by pairs of factorizations of d, since they
are all with disjoint support (we only have one Betti element, and thus it is Betti minimal and
we can apply [20, Lemma 3.1]). If we want ker(π) to be ”cyclic” ([10, Theorem 3.1]), then we
can only have two factorizations.

For the converse, if S has only one Betti element with two factorizations z and z′, then a
minimal presentation for ker(π) is {(z, z′)}, and consequently ker(π) is cyclic, which by [10,
Theorem 3.1] means that S is length factorial. □

Thus, the first implication in (1) is established. The next example show that the converse
fails.

Example 4.8. Any two generated numerical monoid is length factorial, as it easily satisfies
criteria (2). On the other hand, by [11, Example 3.4], the Puiseux monoid M :=

〈
1
p : p ∈ P

〉
has Betti(M) = {1}, but here 2 = 3

( 1
3

)
+ 7

( 1
7

)
= 10

( 1
5

)
and hence M is not length factorial.

Example 4.9. We shall argue shortly in Corollary 6.4 that Z3 and Z2 ⊕ Z2 are the only two
abelian groups that yield a full block monoid with exactly one Betti element. Moreover, in
each of these cases the Betti element admits exactly two irreducible factorizations

(3, 3) = (3, 0) + (0, 3) = (1, 1) + (1, 1) + (1, 1)

(2, 2, 2) = (2, 0, 0) + (0, 2, 0) + (0, 0, 2) = (1, 1, 1) + (1, 1, 1),

and hence both are length factorial.
Here is a block monoid construction of a length factorial monoid taken from [13, Example

7]. We first slightly extend the notion of a block monoid. Let S ⊆ G and define

B(G, S) = {x ∈ F (S) : eval(x) = 0} ,

which we refer to as the block monoid on G restricted to S. It trivially follows that B(G, S) is
a submonoid of B(G), and if B is a Betti element of B(G, S), then B is also a Betti element of
B(G).

Let n ≥ 2 be a positive integer and G ∼=
n

∑
i=1

Zn+2 a finite abelian group. Let ei be the ith

canonical basis vector for G and set f = ∑n
i=1 −ei. Let

S = {e1, e2, . . . , en, f }
be a subset of G. We consider the restricted block monoid B(G, S). Based on the calculations
in [13, Example 7], the irreducible elements of B(G, S) are Bi = en+2

i (for each 1 ≤ i ≤ n),
C = f n+2, and

D =

(
n

∏
i=1

ei

)
· f .

It easily follows that the only Betti element of B(G, S) is

B =

(
n

∏
i=1

en+2
i

)
· f n+2 =

(
n

∏
i=1

Bi

)
· C = Dn+2.
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Moreover, the two irreducible factorizations above are the only factorizations of B. Thus
B(G, S) has only one Betti element with exactly two irreducible factorizations with different
lengths and hence is length factorial.

We note that the block monoids we discuss here are Krull monoids (see [24, Section 2.3]).
Length factorial Krull monoids have been characaterized in [26], and this example essentially
reflects all those Krull monoids with finite divisor class group.

Example 4.10. We note that there are half-factorial monoids with one Betti element with ex-
actly two different factorizations (this indicates that the stipulation in part (2) of Theorem 4.7
that the Betti element has two factorizations of different length is vital). We use the con-
struction set up in Example 4.9 to demonstrate this. Let t > 2 be an integer and set n = 2t.
Consider the restricted block monoid B(Zn, S) with S = {e, te} where e is a generator of
Zn. The monoid B(Zn, S) has three different irreducible blocks: B = en, C = (te)2, and
E = et(te)1. By [13, Corollary 3.9], B(Zn, S) is a half-factorial monoid (this can be verified
using the irreducibles B, C, and E and a straightforward combinatorial argument). It is also
easy to verify that

Betti(B(Zn, S)) = {en(te)2}
where en(te)2 = (et(te))2 are the two irreducible factorizations of the Betti element. B(Zn, S)
is a Krull monoid with divisor class group Zn.

A second example can be had as follows (see [12, Example 1.6]). Let

M = {(x1, x2, x3, x4) ∈ N0 : x1 + x2 = x3 + x4}.

The irreducible elements of M are (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), and (0, 1, 0, 1) and

Betti(M) = {(1, 1, 1, 1)}.

Here (1, 1, 1, 1) = (1, 0, 1, 0) + (0, 1, 0, 1) = (1, 0, 0, 1) + (0, 1, 1, 0) are the two irreducible
factorizations of the Betti element. The set M is a Krull monoid with divisor class group Z.

5. FULL ATOMIC SUPPORT

Recall that an element s in an atomic monoid S has full atomic support if its atomic sup-
port is A(S), and that S has full atomic support if every Betti element of S has full atomic
support. We showed in Section 4 that monoids with a single Betti element have full atomic
support. Additional examples are reduced monoids with a generic presentation (see [5]). In
each of these previous cases, we have that c(S) = ω(S) = t(S) ([5, Theorem 5.6] and [23,
Theorem 19], respectively). In this section, we prove that this holds for all monoids with full
atomic support.

Example 5.1. The numerical monoid ⟨6, 10, 15⟩ has a single Betti element and thus has full
atomic support. The numerical monoid ⟨3, 5, 7⟩ has a generic presentation, and thus it has
full atomic support.

Example 5.2. Let S = ⟨8, 11, 12, 13⟩. Then, Betti(S) = {24, 33, 34, 38, 39}, and all the Betti
elements of S have full atomic support. The minimal presentation of S is not generic. The
monoids ⟨10, 11, 15, 19⟩, ⟨10, 13, 15, 17⟩, and ⟨8, 19, 20, 21⟩ are also of full atomic support with
more than one Betti element and their minimal presentations are not generic (these are the
only examples with this property with Frobenius number less than 37; this search was carried
out with the help of [17]).
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Example 5.3. We now consider some examples of monoids with infinitely many Betti ele-
ments. Consider the Puiseux monoid S = ⟨ai⟩ ⊆ Q, where

a0 = 1, a1 = 3
2 , and ai =

1
2 (ai−1 + ai−2) for i ≥ 2.

Each partial sequence 2ka1, . . . , 2kak generates a complete intersection numerical monoid, so
every generator ai of S is an atom, and Betti(S) = {2ai : i ≥ 1}. In particular, S has infinitely
many Betti elements, all of which are incomparable to one another, although none have full
atomic support.

Next, consider the multiplicative monoid S with generators xi, yi for i ∈ Z, subject to the
relations xiyj = xi+1yj+1 for i, j ∈ Z. Each Betti element of S is of the form bj = x0yj and
has full atomic support. If one instead restricts to only the relations xiyj = xi+1yj+1 with
1 ≤ j − i ≤ k, then the resulting monoid has exactly k Betti elements, each of which again
has full atomic support.

Proposition 5.4. Let S be a monoid with full atomic support. Then, all its Betti elements are pairwise
incomparable with respect to ≤S.

Proof. Let b and b′ be Betti elements such that b <S b′. By Lemma 4.1(b), there exits a factor-
ization z of b′ whose support is disjoint with the atomic support of b, which is impossible as
b has full atomic support. □

Example 5.5. Consider the numerical semigroup S = ⟨5, 6, 9⟩ with Betti elements 15, 18. These
are incomparable with respect to ≤S, and 18 does not have full atomic support since 5 ̸≤ 18.
This shows that the converse of Proposition 5.4 does not hold.

Let S be a monoid and let s ∈ S \ {0}. The Apéry set of s ∈ S is defined as

Ap(S, s) = {x ∈ S : x − s ̸∈ S} = S \ (s + S).

Observe that if w ∈ Ap(S, s) and w′ ∈ S is such that w′ ≤S w, then w′ ∈ Ap(S, s), that is, the
set Ap(S, s) is divisor-closed (using additive notation).

Proposition 5.6. Let S be a monoid with the ascending chain property on principal ideals. The
following are equivalent.

(1) The monoid S has full atomic support.
(2) For every atom a of S, all the elements in Ap(S, a) have a unique factorization into products

of irreducibles.

Proof. Suppose that there exists a an atom of S and w ∈ Ap(S, a) such that w has more than
one factorization. By [20, Corollary 3.8], there exists b ∈ Betti(S) such that b ≤S w. But then
b ∈ Ap(S, a), meaning that b − a ̸∈ S, and so b does not have full atomic support.

For the converse, suppose b is a Betti element that does not have full atomic support. Then
there is some atom a with b − a /∈ S, so b ∈ Ap(S, a), and, by definition, b has more than one
factorization. □

Let S be a numerical monoid with multiplicity m. Such S having the property that all the
elements in Ap(S, m) have unique irreducible expression, were called numerical monoids
with Apéry sets of unique expression in [31], and staircase monoids in [3]. These monoids
have attracted the attention of several researchers, in part due to the properties of their min-
imal presentations. Other families of numerical monoids having Apéry sets of unique ex-
pression include numerical monoids with maximal embedding dimension [33, Chapter 2]
and numerical monoids with α-rectangular Apéry sets [16].
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Let S be a monoid, s ∈ S, and N a positive integer. We now consider the notion of the
distance between elements of Z(s). Given z = ∑A zaa, z′ = ∑A z′aa ∈ Z(s), define the distance
between z and z′ as

d(z, z′) = max{|z − (z ∧ z′)|, |z′ − (z ∧ z′)|},

where z ∧ z′ = ∑a∈A min{za, z′a}a. An N-chain of factorizations connecting z and z′ is a
sequence z1, . . . , zn ∈ Z(s) such that z = z1, zn = z′ and d(zi, zi+1) ≤ N for all i ∈ {1, . . . , n −
1}. The catenary degree of s, denoted here by c(s), is the minimum N ∈ N0 ∪ {∞} such that
any two factorizations of s can be connected by an N-chain. The catenary degree of S is
defined as c(S) = sup{c(s) : s ∈ S}.

The following result shows how to compute the catenary degree of S once we know the
factorizations of its Betti elements.

Lemma 5.7. Let S be a monoid all of whose Betti elements are pairwise incomparable with respect to
≤S. Then,

c(S) = sup{|z| : z ∈ Z(Betti(S))}.

Proof. We already know that c(S) = sup{c(b) : b ∈ Betti(S)} (this is a consequence of
Section 3 in [8, 30]). In light of Proposition 5.4, every Betti element is minimal and by [20,
Proposition 3.6], all the factorizations of every Betti element are isolated, that is, each R-class
of Z(b) for b ∈ Betti(S) is a singleton. By [30, Corollary 9], c(b) = sup{|z| : z ∈ Z(b)}, and
the result follows easily. □

Let S be a monoid and let s ∈ S. We now consider a function that measures how far
an element is from being prime. Define the ω-primality of s, denoted by ω(s), as the k ∈
N0 ∪ {∞} such that whenever s ≤S a1 + · · ·+ an for some a1, . . . , an ∈ S, then s ≤S ∑i∈I ai
for some I ⊆ {1, . . . , n} with |I| ≤ k. The ω-primality of S is ω(S) = sup{ω(a) : a ∈ A(S)}.

Let I be a set indices, and let ei be the sequence of N
(I)
0 all of whose entries are zero, except

the ith, which is equal to one. If we want to compute the ω-primality of an atom of S, then
by [5, Proposition 3.3] the set Minimals≤(Z(a + S)) is important, where ≤ is the usual partial
ordering in N

(A(S))
0 (which we identify with F (A(S))). We next offer a description of this

set.

Lemma 5.8. Let S be a monoid with full atomic support, and let a ∈ A(S). Then,

Minimals≤(Z(a + S)) = {ea} ∪ {z ∈ Z(Betti(S)) : a ̸∈ supp(z)} .

Proof. Let x ∈ Minimals≤(Z(a + S)), with x ̸= ea. Then, xa = 0. Let s = φ(x), with φ as
in (2). It follows that s ∈ a + S, and consequently there exists y ∈ Z(s) such that ya ̸= 0.
Hence, (x, y) ∈ ker(φ), which implies by [4, Theorem 1], that the there exists b ∈ Betti(S)
and z ∈ Z(b) such that z ≤ x. In particular, za = 0. As by hypothesis b has full atomic
support, b ∈ a + S, and so z ∈ Z(a + S). The minimality of x yields x = z ∈ Z(Betti(S)).

For the other inclusion, let z ∈ Z(Betti(S)) be such za = 0. If follows that b = φ(z) is a Betti
element, and consequently φ(z) ∈ a + S (every Betti element of S has full atomic support by
hypothesis); whence z ∈ Z(a + S). If there exists x ∈ Z(a + S) with x < z, then xa = 0, and
so there exists y ∈ Z(φ(x)) such that ya ̸= 0. In particular, (x, y) ∈ ker(φ). Thus, by the same
argument used above, there exists b′ ∈ Betti(S) and x′ ∈ Z(b′) such that x′ ≤ x < x. But
then b′ = φ(x′) ≤S φ(b) and b ̸= b′, contradicting the fact that every Betti element of S is
Betti-minimal (Proposition 5.4). □

We now consider an invariant that measures how factorizations behave relative to a fixed
atom. Let S be a monoid, s ∈ S, and let a ∈ A(S) be such that a ≤S s. There is then a
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factorization z = (za)a∈A(S) with z ∈ Z(s) and za ̸= 0. The tame degree of s with respect to
a, t(s, a), is the least nonnegative integer t such that for every z ∈ Z(s), there exists z′ =
(z′a)a∈A ∈ Z(s) with z′a ̸= 0 and d(z, z′) ≤ t. The tame degree of S with respect to a, denoted
by t(S, a), is the supremum of all the tame degrees of the elements of a + S with respect to
a. The tame degree of S, which we denote by t(S), is the supremum of the tame degrees of S
with respect to all the atoms.

Theorem 5.9. Let S be a monoid with full atomic support. Then, c(S) = ω(S) = t(S).

Proof. We already know that c(S) ≤ ω(S) ≤ t(S) (see for instance equation (5.1) in [5]).
Thus, it suffices to prove that t(S) ≤ c(S). Let s ∈ S be minimal with respect to ≤S
such that t(s) = t(S), and suppose that t(s) = d(z, z′) for some z, z′ ∈ Z(s). Then, z ∈
Minimals≤(Z(a + S)) for some a ∈ A(S) [5, Lemma 5.4]. By Lemma 5.8, z ∈ z(b) for some
b ∈ Betti(S), and by Proposition 5.4, b is Betti-minimal, which by [20, Proposition 3.6] im-
plies that all the factorizations of b are isolated. In particular, d(z, z′) = max{|z|, |z′|} ≤
sup {|x| : x ∈ Z(Betti(S))} = c(S) (Lemma 5.7). □

As opposed to the generic case, a dual representation is a relation with the least possible
support (in the case of numerical semigroups the least possible number of atoms involved
in a minimal relation is two). Relations of this form are known as circuits, (see [23, 19]). It is
known that if an affine monoid has a single Betti element, then the set of circuits is a minimal
presentation of the monoid [23, Corollary 10].

Example 5.10. One may wonder if Theorem 5.9 holds for affine monoids having a minimal
presentation formed by circuits. The answer is no and we show this with a universally free
numerical monoid taken from [19, Example 3.13]. Let S = ⟨390, 546, 770, 1155⟩. With the
help of [17], we can see that t(S) = ω(S) = 77 and c(S) = 55.

Example 5.11. Observe that Lemma 5.7 holds for the more general class of monoids all of
whose Betti elements are incomparable (and thus all its factorizations are isolated). So,
one may ask if Theorem 5.9 holds for this broader family of monoids. The answer is no,
as the following example extracted from [9] shows. In this example, not all the Betti el-
ements of S will be of full atomic support. Take S = ⟨17, 40, 56⟩. By using the GAP [18]
package numereicalsgps [17] we see that Betti(S) = {136, 280} and 280 − 136 ̸∈ S; also by
numericalsgps we obtain that c(S) = 8, t(S) = 9, and ω(S) = 13.

6. THE SPECIAL CASE OF BLOCK MONOIDS

In Example 3.3 we introduced block monoids and looked at some basic calculations of
their Betti elements. We expanded on this in Section 4 by constructing examples of restricted
block monoids that contained exactly one Betti element (Examples 4.9 and 4.10). In this sec-
tion we characterize block monoids with one Betti element, and show that this is equivalent
to the not only the block monoid having full atomic support, but also the length factorial
property. Along the way, we tie this in with several well-known factorization properties, as
well as the Davenport constant of the defining finite abelian group of the block monoid.

We open with a relatively simple, yet important lemma.

Lemma 6.1. Let G be an abelian group and S ⊆ G. Set M = B(G, S), assumed to not be factorial
and with full atomic support. Then, A(M) and Betti(M) are finite.

Proof. Let b be a Betti element of M. Since M is a submonoid of a free commutative monoid,
b has only finitely many divisors. Moreover, since b has full atomic support, every element
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of A(M) divides b. As such, M has finitely many atoms. By [32], M then also has finitely
many Betti elements. □

The following gives rather restrictive conditions on torsion Krull monoids all of whose
Betti elements have full atomic support.

Lemma 6.2. Let G be an abelian group and S = {s1, s2, . . . , sk} ⊆ G a torsion subset, and assume
B(G, S) is not factorial. If B(G, S) has full atomic support, then the following hold:

(1) with the exception of ai = ord(si)si, every atom of B(G, S) involves every element of S; and
(2) ⟨s1, . . . , ŝj, . . . , sk⟩ ∼=

⊕
i ̸=j(Z/ ord(si)Z) for each j.

Proof. Clearly each ai ∈ A(B(G, S)). Suppose c ∈ A(B(G, S)) is an atom distinct from the
ai (note that at least one such atom must exist since B(G, S) is not factorial). We claim every
element of S appears in c. Indeed, suppose sj ∈ S appears in c. Since B(G, S) is root-closed,
ord(sj)c is divisible by aj and thus has more than one factorization (see [20, Lemma 3.14]).

Let bc ∈ Betti(B(G, S)) denote the smallest multiple of c with more than one factorization.
Since bc has full atomic support, it must be divisible by ai for every i. This means bc involves
every element of S, and thus so does c.

Next, up to relabeling, we can assume j = k, so consider the subgroup

G′ = ⟨s1, . . . , sk−1⟩ =
{

k−1

∑
i=1

misi : 0 ≤ mi < ord(si)

}
.

We claim |G′| = ∏k−1
i=1 ord(si). Indeed, suppose |G′| < ∏k−1

i=1 ord(si). By the pigeonhole prin-
ciple, there exist two choices of coefficients that give the same element of G′, i.e., ∑k−1

i=1 misi =

∑k−1
i=1 m′

isi. But then ∑k−1
i=1 (mi − m′

i (mod ord(si))si = 0, which implies there is an atom of
B(G, S) distinct from the ai not involving sj, which contradicts (1). Hence (2) is proved. □

Lemma 6.2 allows us to prove the following technical result, which in some sense is a
formalization of Example 3.3.

Theorem 6.3. Let G be an abelian group and S = {s1, s2, . . . , sk} ⊆ G a torsion subset, and assume
B(G, S) is not factorial. For each i, let ri be minimal such that risi ∈ ⟨s1, . . . , ŝi, . . . , sk⟩, let ti = risi,
and let T = {t1, . . . , tk}. If B(G, S) has full atomic support, then the following hold:

(1) d := ord(t1) = · · · = ord(tk) and t1 + · · ·+ tk = 0;
(2) the atoms of B(G, S) are d(t1), . . . , d(tk), and t1 + · · ·+ tk; and
(3) b = dt1 + · · ·+ dtk is the unique Betti element of B(G, S).

Moreover, B(G, S) is half-factorial if and only if k = d, and length-factorial otherwise.

Proof. Since
⟨si⟩ ∩ ⟨s1, . . . , ŝi, . . . , sk⟩ = ⟨srk

i ⟩
as subgroups of G, in any zero-sum sequence ∑k

i=1 misi we must have ri | mi for each i.
In particular, in any zero-sum sequence in s1, . . . , sk, one can substitute risi 7→ ti for each i to
obtain a zero-sum sequence in t1, . . . , tk.

We briefly address the case k = 2 and t1 = t2. In this case, one can readily check

A(B(G, S)) =
{

i(r1s1) + (d − i)(r2s2) : 0 ≤ i ≤ d
}

,

where d = ord(t1) = ord(t2) ≥ 2. If d ≥ 3, then

b = 2
(
(r1s1) + (d − 1)(r2s2)

)
=
(
2(r1s1) + (d − 2)(r2s2)

)
+
(
d(r2s2)

)
is a Betti element without d(r1s1) in its atomic support. This implies d = 2, so (1)-(3) hold.
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Proceeding now with all other cases, we verify two additional items:
• each ti is nonzero (indeed, if some tj = 0, applying Lemma 6.2(2) to S and j implies

⟨s1, . . . , sk⟩ ∼= ⟨sj⟩ ⊕ ⟨s1, . . . , ŝj, . . . , sk⟩ ∼= (Z/ ord(s1)Z)⊕ · · · ⊕ (Z/ ord(sk)Z)

which is impossible since B(G, S) is not factorial); and
• the ti are distinct (indeed, if ti = tj for some i ̸= j, then the case k = 2 has already been

handled, and for the case k ≥ 3, applying Lemma 6.2(2) to any (k − 1)-element subset
of {s1, . . . , sk} containing both si and sj would force ti = tj = 0, which contradicts the
preceding item).

As such, the mapping ti 7→ risi induces a natural isomorphism B(G; T) ∼= B(G, S). In what
follows, we will prove (2) and (3) by proving

A(B(G, T)) = {dt1, . . . , dtk, t1 + · · ·+ tk} and Betti(B(G, T)) = {dt1 + · · ·+ dtk}.

Note B(G, T) has full atomic support since B(G, S) does, and each ti ∈ ⟨t1, . . . , t̂i, . . . , tk⟩.
Now, letting ai = ord(ti)ti ∈ A(B(G, T)) for each i, applying Lemma 6.2 to B(G, T) im-

plies any atom c ∈ A(B(G, T)) distinct from the ai involves every element of T, and the
subgroup

G′ = ⟨t1, . . . , tk−1⟩ ∼= (Z/ ord(t1)Z)⊕ · · · ⊕ (Z/ ord(tk−1)Z).
By construction tk ∈ G′, so tk = ∑k−1

i=1 miti with 0 ≤ mi < ord(ti) for each i. It must be that
for each i, gcd(mi, ord(ti)) = 1, since if this were not the case, then ti /∈ ⟨t1, . . . , t̂i, . . . , tk⟩,
which is impossible. As such, ord(tk) = lcm(ord(t1), . . . , ord(tk−1)). However, applying
Lemma 6.2 to any (k − 1)-element subset of {t1, . . . , tk} yields

ord(ti) = lcm(ord(t1), . . . , ôrd(ti), . . . , ord(tk))

for each i, which is only possible if ord(t1) = · · · = ord(tk). This proves the first part of (1).
Let d = ord(t1). Since tk ∈ G′, there is a unique expression of the form ∑k−1

i=1 miti + tk = 0
with 0 ≤ mi < d for each i. We claim mi = 1 for each i. Indeed, suppose some mj > 1, and
let c = ∑k−1

i=1 miti + tk, which is necessarily an atom due to the singular copy of tk and the
uniqueness of m1, . . . , mk−1. Since B(G, T) is root-closed, the element (d − 1)c ∈ B(G, T) is
divisible by aj and thus has a factorization with aj in its support. As such, (d− 1)c is divisible
by a (full atomic support) Betti element, which is impossible since ak does not divide (d− 1)c.
This proves the claim, and thus (1).

Only three claims remain to be verified. For each j = 2, . . . , k − 1, we see j(t1 + · · ·+ tk)

is the unique element of B(G, T) of the form ∑k−1
i=1 miti + jtk with 0 ≤ mi < d for each i, and

thus not an atom, so (2) is proven. The uniqueness of the Betti element in (3) follows from the
observation that B(G, T) can be realized as a full-dimensional affine semigroup in Zk with
k + 1 atoms. Lastly, the half- and length-factoriality claims follow from Theorem 4.7 and the
fact that

d(t1 + · · ·+ tk) = a1 + · · ·+ ak

are the only factorizations of the only Betti element of B(G, T). □

We show in the next result that for full block monoids the notion of length factorial and
one Betti element coincide.

Corollary 6.4. Let G be an abelian group. The following statements are equivalent:
(1) B(G) is a non-factorial block monoid in which all Betti elements have full atomic support;
(2) B(G) is a block monoid with exactly one Betti element;
(3) G is isomorphic to Z2 ⊕ Z2 or Z3;
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(4) the Davenport constant of G is equal to 3;
(5) 1 < ρ(B(G)) ≤ 3/2; and
(6) B(G) is length factorial but not factorial.

Proof. The equivalence of (1) and (2) follows directly from Theorem 6.3.
(1)⇒(3). First, we note that A(B(G)) is finite if and only if G is finite [24, Theorem 3.4.2 and

Proposition 5.1.3]. Then, applying Theorem 6.3 to B(G, S) with S = G \ {0} = {s1, . . . , sk},
we must have ri = 1 for all i. Now, if k = 2, then s1 = −s2 and thus G ∼= Z3. If, on the
other hand, k ≥ 3, then Lemma 6.2(2) implies s1 + s2 /∈ {s1, . . . , sk−1} and thus s1 + s2 = sk.
Theorem 6.3 thenforces k = 3 and s3 = s1 + s2, and so G ∼= Z2 ⊕ Z2.

(3)⇒(4). By [25, Theorem 1], D(Z2 ⊕ Z2) = D(Z3) = 3.
(4)⇒(5). By [2, Proposition 5.5], B(G) = 3

2 .
(5)⇒(6). Again by [2, Proposition 5.5], ρ(B(G) = D(G)

2 where D(G) is an integer greater
than or equal to 2. By (4), our only option is ρ(B(G) = 3

2 . Thus, D(G) = 3 and again
appealing to [25, Theorem 1], we obtain that G = Z3 or G = Z2 ⊕ Z2. By Example 3.3, Both
B(Z3) and B(Z2 ⊕ Z2) are length factorial.

(6)⇒(2). This follows from Proposition 4.7. □
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18 S. T. CHAPMAN, P. GARCÁ-SÁNCHEZ, C. O’NEILL, AND V. PONOMARENKO

[17] M. Delgado, P. A. Garcı́a-Sánchez, J. Morais, NumericalSgps, A package for numerical semigroups, Version
1.3.1 dev (2023), Refereed GAP package, https://gap-packages.github.io/numericalsgps. 3.3, 5.2, 5.10,
5.11

[18] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.12.2, (2022), https://www.
gap-system.org. 3.3, 5.11

[19] I. Garcı́a-Marco, P. A. Garcı́a-Sánchez, I. Ojeda, Ch. Tatakis, Universally free numerical semigroups, J. Pure
Appl. Algebra 228 (5) (2024), Article No. 107551 (24 pages). 5, 5.10

[20] P. A. Garcı́a-Sánchez, A. Herrera-Poyatos, Isolated factorizations and their applications in simplicial affine
semigroups, J. Algebra Appl. 19 (2020), 2050082 (42 pages). 1, 2, 4, 4, 4, 5, 5, 5, 6

[21] P. A. Garcı́a-Sánchez, H. Martı́n-Cruz H., Numerical semigroups with embedding dimension three and
minimal catenary degree, Integers 20(2020), #A81. 2

[22] P. A. Garcı́a-Sánchez, I. Ojeda, A. Sánchez-R.-Navarro, Factorization invariants in half-factorial affine semi-
groups, Internat. J. Algebra Comput. 23 (2013), 111–122. 1, 2

[23] P. A. Garcı́a-Sánchez, I. Ojeda, J. C. Rosales, Affine semigroups having a unique Betti element, J. Algebra
Appl. 12 (2013), 1250177 (11 pages). 1, 2, 1, 5, 5

[24] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory,
Chapman and Hall/CRC, Boca Raton, Florida, 2006. 2, 2, 3.3, 4, 6

[25] A. Geroldinger and R. Schneider, On Davenport’s constant. J. Comb. Theory, Series A, 61 (1992), 147–152. 6
[26] A. Geroldinger and Q. Zhong, A characterization of length-factorial Krull monoids, New York J. Math. 27

(2021), 1347–1374. 4, 4
[27] F. Gotti and M. Gotti: Atomicity and boundedness of monotone Puiseux monoids, Semigroup Forum 96 (2018),

536–552. 3.2
[28] P. A. Grillet, Commutative semigroups, Advances in Mathematics (Dordrecht) 2 (2001). Kluwer Academic

Publishers, xiv, 436 p. 4
[29] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math.

3(2)(1970), 175–193. 2, 3.1
[30] A. Philipp, A characterization of arithmetical invariants by the monoid of relations, Semigroup Forum 81

(2010), 424–434. 1, 5
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