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Continued Fractions in the 21st Century
Vadim Ponomarenko

Abstract. We present useful (though largely not original) continued fraction tools, that deserve
to be more widely known to a broad mathematical audience.

Many mathematicians, myself included, learned about continued fractions in a first
course on elementary number theory (from a book like [1], [2], or [3]). They are typi-
cally presented briefly, as a curiosity with various technical properties, useful for solv-
ing Pell’s equation and in other special contexts, but otherwise of niche interest.

The intent of this paper is to reframe continued fractions as a more natural and
usually superior alternative to decimals as a representation of real numbers, much like
radians are a more natural and usually superior alternative to degrees as a representa-
tion of angles. Towards this ambitious goal, we will create new notation conducive to
better intuition, and describe “folklore” arithmetic results, familiar to experts.

We first review the basics. We only consider so-called simple continued fractions,
whose numerators are all 1 and whose denominators are built from a sequence (finite
or infinite) of integers, all positive (apart from, possibly, the first term). See Figure 1
for examples.

Because n = (n − 1) + 1
1
, any finite continued fraction has two representations,

e.g. [2; 4] = [2; 3, 1] and [2; 4, 6] = [2; 4, 5, 1] in the traditional notation. Historically,
the shorter representation has been canonical. Instead, we choose the representation
that gives an even number of terms. This allows us to use a new notation, pairing off
the terms, with semicolons separating pairs. In our proposed new notation we would
canonically write [2, 4] and [2, 4; 5, 1].

a0 +
1

a1 +
1

a2 +
1

a3

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

. . .
Old: [a0; a1, a2, a3] Old: π ≈ [3; 7, 15, 1, 292]
New: [a0, a1; a2, a3] New: π ≈ [3, 7; 15, 1; 291, 1]

Figure 1. Examples of finite and infinite continued fractions

1. CONTINUED FRACTION MATRICES To better enjoy the merits of continued
fractions, we first take a brief detour into vectors and matrices. Our vectors [ αβ ] hence-
forth are assumed to have real1 entries, not both zero. We build an equivalence relation
[ αβ ] ≡ [

αγ
βγ ], for all positive γ ∈ R. We choose as canonical equivalence class repre-

sentative
[
α/β
1

]
, where for convenience (abusing notation) call this vector just α

β
. If

β = 0, we all this vector∞; if this is troubling, consider instead a limit, leading to the
same outcome.

1More precisely, from the real projective line R ∪ {∞}.
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For any a, b ∈ Z, with b positive, we define the continued fraction matrix

C(a, b) = [ ab+1 a
b 1 ] .

We now introduce a nonnegative uncertainty vector [ x1 ] = x. A priori that uncer-

tainty is complete: 0 ≤ x ≤ ∞. Note thatC(a, b)x = [ ab+1 a
b 1 ] [

x
1 ] =

[
(ab+1)x+a
bx+1

]
≡[

(ab+1)x+a
bx+1
1

]
= (ab+1)x+a

bx+1
. As x varies from 0 to∞, this fraction varies from a

1
= a

to ab+1
b

= a+ 1
b
. Hence, multiplication by C(a, b) has reduced our uncertainty from

[0,∞] to [a, a+ 1
b
].

From an intuitive standpoint, we consider the fraction built from the first column
of C(a, b), namely ab+1

b
= a+ 1

b
, as our best estimate. The fraction from the second

column, namely a
1
= a, identifies the maximal error in that estimate, by giving a lower

bound. We know a+ 1
b

is an upper bound, with an error at most (a+ 1
b
)− a = 1

b
.

We can refine that estimate, and shrink the error, by taking additional continued
fraction matrices. If x did not vary through the entirety of [0,∞], then the range of
C(a, b)x would be smaller as well. C(a, b)C(c, d)x means that in

C(a, b)C(c, d)x =
(ab+ 1)C(c, d)x+ a

bC(c, d)x+ 1
,

C(c, d)x varies from c to c+ 1
d

, reducing the uncertainty of C(a, b)C(c, d)x. Fortu-
nately, we can use matrix multiplication here, calculating

[ ab+1 a
b 1 ] [

cd+1 c
d 1 ]x =

[
(ab+1)(cd+1)+ad (ab+1)c+a

b(cd+1)+d bc+1

]
x,

where we take our best estimate as (ab+1)(cd+1)+ad

b(cd+1)+d
, and our lower bound as (ab+1)c+a

bc+1
.

The best estimates from these continued fraction matrices translate directly into the
new continued fraction notation as C(a, b) = [a, b] and C(a, b)C(c, d) = [a, b; c, d].

We can now pause and compare with decimal notation. When we say π ≈ 3.1, our
best guess is that π = 3 + 1

10
. The true value is either in [3 + 1

10
− 1

20
, 3 + 1

20
), if 3.1

was rounded2, or [3 + 1
10
, 3 + 1

10
+ 1

10
), if 3.1 was truncated. If we don’t know if it

is rounded or truncated, to be safe we must say the true value is in [3 + 1
10
− 1

20
, 3 +

1
10

+ 1
10
). This is an interval of size 3

20
. What a confusing mess! Instead consider the

continued fraction notation π ≈ [3, 7]. Our best guess is that π = 3 + 1
7
, with the true

value in (3, 3 + 1
7
]. This is simpler, known to be an overestimate, and with a (slightly)

smaller error interval than 3
20

.
Taking twice as many terms, π ≈ 3.141 gives our best guess of π = 3 + 141

1000
,

with an error interval of size 3
2000

. Instead taking π ≈ [3, 7; 15, 1] = [ 22 3
7 1 ] [

16 15
1 1 ] =

[ 355 333
113 106 ]. This gives a best guess of π = 355

113
, with an error interval of size 355

113
− 333

106
=

1
11978

. We get a nicer fraction, and a much smaller error. Indeed, any large term (like
15) in a continued fraction makes a particularly small error interval. Decimal notation
always gives the same error interval, with no hope for better.

Suppose now we have two reals x, y and we wish to resolve trichotomy: are they
equal, or is one of them greater? With decimal notation, we start by finding the first
place where they disagree. Sometimes this is enough, but sometimes our work is just
beginning – if x ≈ 1.24 and y ≈ 1.23, we still don’t know if x = y or x > y (or

2If we agreed that 3.05 would be rounded up to 3.1. This adds even more complexity!
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even x < y if x was rounded up from 1.236 while y was truncated down from 1.238).
We must continue, possibly forever, looking at more terms. However, with continued
fraction notation our work is done once we find the first term of disagreement. Suppose
x ≈ [. . . ; c, d] and y ≈ [. . . ; c′, d′]. Comparing c + 1

d
with c′ + 1

d′ , we see that if
c > c′ then x is bigger; if instead c = c′ and d > d′ then x is smaller. This remains
true regardless of any subsequent terms. Equality can only hold if all terms agree.

Note that if we momentarily allowed b = 0, then C(0, 0) = [ 1 0
0 1 ], so C(a, b) =

C(a, b)C(0, 0) = C(a, b)C(0, 0)C(0, 0). Hence, just as with decimal representa-
tion, we can interpret any finite continued fraction [a1, b1; a2, b2; . . . ; ak, bk] as the
infinite continued fraction [a1, b1; a2, b2; . . . ; ak, bk; 0, 0; 0, 0; . . .]. Apart from this
application we resume insisting that b > 0 in C(a, b).

For one more comparison with decimal notation, to prove Cantor’s famous diago-
nalization theorem requires several annoying technicalities, partly due to the fact that
1.0 = 0.9. Many real numbers have two decimal representations, so we need to pick
one when we place them in a putative bijection with N. Then, when we build our new
real number digit-by-digit, we can’t just add one since there are only ten digits avail-
able; this is usually handled with awkward cases. Lastly, when we are done, we need
to be careful that our new number doesn’t have two decimal representations, to en-
sure it is not on the list. Compare with the following proof using continued fractions,
avoiding all of this mess.

Proof of Cantor’s theorem. Suppose f : N → R via n 7→ [an,1, an,2; . . .] were a bi-
jection, choosing infinite representations. We see x = [a1,1 + 1, a2,2 + 1; . . .] is not
in the image of f , with its n-th entry differing from f(n).

To calculate C(a, b) to estimate a known real x, we can iteratively use the classical
algorithm: a = bxc, b = b 1

x−ac. This suffices, with some care, to prove that continued
fraction representation is unique (up to, possibly, the last nonzero term), but we offer
a different, novel, uniqueness result. Consider generic 2 × 2 integer matrices M =
[ u1 u2v1 v2 ], not necessarily built as a product of continued fraction matrices, with v1 ≥ 0
and u1, v1 not both zero. Considering Mx, we can take u1

v1
as our best estimate for x,

and u2
v2

as providing the error. The restrictions maintains generality, since u1
v1

= −u1
−v1

,
and u1 = v1 = 0 is no estimate. If u2 = v2 = 0 then the error is unknown.

For matrices M,C, we say that C nicely left divides M to mean there is some
matrixN =

[
u′1 u

′
2

v′1 v′2

]
with CN =M , u′1 ≥ 0, and v′1 ≥ 0. Theorem 1, below, tells us

that for any M meeting our two restrictions, there is a unique sequence of continued
fraction nice left divisors M = C(a1, b1)C(a2, b2) · · ·C(ak, bk)N , where terminal
matrix N has lower-left entry 0. Further, each ai, bi are positive, except possibly a1.
Hence the continued fraction corresponding to M is [a1, b1; a2, b2; . . . , ak, bk], with
the terminal N just ignored as its best estimate is∞. This allows us to consider any
rational estimate and rational error, not just ones arising from a product of continued
fraction matrices.

Theorem 1. Let M = [ u1 u2v1 v2 ], where u1, u2, v1, v2 ∈ Z, v1 ≥ 0, and u1, v1 are not
both zero. If v1 = 0, then there are no continued fraction matrices that nicely left
divide M .

If, instead, v1 6= 0, then there is exactly one continued fraction matrix C(a, b) that

nicely left divides M . Taking N =
[
u′1 u

′
2

v′1 v′2

]
with C(a, b)N =M , we must have u′1 >

v′1 ≥ 0. We have a > 0 if and only if u1 > v1. Lastly, we also must have v1 > v′1.
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Proof. We haveC(a, b)−1 =
[

1 −a
−b ab+1

]
, so we haveN =

[
u1−av1 u2−av2

v1(ab+1)−bu1 v2(ab+1)−bu2

]
.

If v1 = 0, then u′1 = u1 and v′1 = −bu1. Since b > 0 and u1 6= 0, either u′1 < 0 or
v′1 < 0. Hence C(a, b) fails to nicely left divide M .

If instead v1 > 0, then choose a = du1
v1
e − 1. Note that this is positive if and only if

u1 > v1. This choice makes u1
v1
− 1 ≤ a < u1

v1
, which rearranges to 0 < u1 − av1 ≤

v1. Now we have u′1 = u1 − av1 and 0 < u′1 ≤ v1. This is a type of division al-
gorithm, but with remainder strictly greater than zero. Now choose b = b v1

u′1
c. This

choice makes v1
u′1
− 1 < b ≤ v1

u′1
, which rearranges to 0 ≤ v1 − bu′1 < u′1. This is the

usual division algorithm. Now we have v′1 = v1 − bu′1, with 0 ≤ v′1 < u′1. Note that
v′1 = v1 − bu′1 = v1 − b(u1 − av1) = v1(ab+ 1)− bu1. Combining v′1 < u′1 with
u′1 ≤ v1, we see that v′1 < v1.

Note also that Theorem 1 gives an upper bound for the number of continued fraction
terms nicely left dividing M , since the lower left entry strictly decreases with each
step. Better bounds are known, using the details of the division algorithm.

2. CONTINUED FRACTION ARITHMETIC We turn our attention now to the
four basic operations of addition, subtraction, multiplication, and division. Using dec-
imal representation, addition and subtraction have an unknown but potentially large
amount of annoying carrying and borrowing. At least we can do these operations on n
digits in O(n) operations. Multiplication and division (at least in the traditional way)
with decimal representation is horrible. Still plenty of carrying and borrowing, and
now we must do O(n2) operations for n-digit inputs, multiplying each digit of each
input by each digit of the other. These four operations have four completely different
algorithms, and the error of the result is tricky to estimate.

It turns out that if we use continued fraction representation, there is a single, simple,
O(n) algorithm on inputs of n terms, for all four operations, with no carrying or
borrowing, that also gives an error bound. This was first discovered by Bill Gosper in
the 1972 HAKMEM technical report [4], as well as its difficult-to-find appendix [5].
This “folklore” is well-known to experts in computing (see [6, 7, 8, 9, 10, 11, 12]), but
has only rarely appeared in the mathematical literature (see [13, 14, 15]) and never (to
the best of our knowledge) in a mathematical introduction to continued fractions.

In fact, this algorithm lets us calculate the more general function

f(x, y) =
α1xy + α2x+ α3y + α4

β1xy + β2x+ β3y + β4

,

for our choice of parameters α1, α2, α3, α4, β1, β2, β3, β4. Addition corresponds to
α2 = α3 = β4 = 1 (all others zero), subtraction corresponds to α2 = β4 = 1, α3 =
−1, multiplication corresponds to α1 = β4 = 1, while division corresponds to α2 =
β3 = 1. We can even do other operations in one step, like x−y

xy+2
.

Formally, this is done with 2 × 2 × 2 tensors, but it is simpler to think in terms
of two 2× 2 matrices. We calculate [ y1 ]

T
[ α1 α3
α2 α4 ] [

x
1 ] = [α1xy + α2x+ α3y + α4],

and similarly [ y1 ]
T
[
β1 β3
β2 β4

]
[ x1 ] = [β1xy + β2x + β3y + β4]. Stacking these on top

of each other gives
[ α1xy+α2x+α3y+α4
β1xy+β2x+β3y+β4

]
. As x, y each vary in [0,∞], the fraction

α1xy+α2x+α3y+α4
β1xy+β2x+β3y+β4

varies in the convex hull of the four fractions α1
β1
, α2
β2
, α3
β3
, α4
β4

. We
can build a 2× 2 matrix M by putting the terms of the largest of these on the left, the
smallest of these on the right, and interpret (or write in continued fraction notation)
using Theorem 1.
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At first glance, this might seem silly, since we picked all eight parameters,
so the four fractions are fixed. However this is only for generic uncertainty vec-
tors x, y. Suppose we have approximations for each: C(a1, b1)C(a2, b2) [ x1 ] and
C(a3, b3)C(a4, b4) [

y
1 ]. Substituting into the first, we get

(C(a3, b3)C(a4, b4) [
y
1 ])

T
[ α1 α3
α2 α4 ] (C(a1, b1)C(a2, b2) [

x
1 ]) =

[ y1 ]
T
(C(a3, b3)C(a4, b4))

T
[ α1 α3
α2 α4 ]C(a1, b1)C(a2, b2)︸ ︷︷ ︸ [ x1 ] =

[ y1 ]
T
[
α′
1 α

′
3

α′
2 α

′
4

]
[ x1 ]

If My is the product of continued fractions representing y, and Mx is the prod-
uct of continued fractions representing x, then the inner term (giving our new
α1, α2, α3, α4 parameters) is just

[
α′
1 α

′
3

α′
2 α

′
4

]
= MT

y [ α1 α3
α2 α4 ]Mx. Similarly, the sec-

ond matrix is
[
β′1 β

′
3

β′2 β
′
4

]
=MT

y

[
β1 β3
β2 β4

]
Mx. If we do this calculation and find we want

more accuracy, we can calculate additional continued fraction matrices for x, y. We
multiply on the right by the former, and multiply on the left by the transpose of the
latter. Hence, if desired, we can compute f(x, y) iteratively, improving the accuracy
one step at a time.

Example 2. We have
√
2 ≈ [1, 2; 2, 2] = [ 17 7

12 5 ], and e ≈ [2, 1; 2, 1] = [ 11 8
4 3 ]. To

find
√
2 + e we calculate [ 11 8

4 3 ]
T
[ 0 1
1 0 ] [

17 7
12 5 ] = [ 200 83

147 61 ] and [ 11 8
4 3 ]

T
[ 0 0
0 1 ] [

17 7
12 5 ] =

[ 48 20
36 15 ]. Of the fractions 200

48
, 83
20
, 147

36
, 61
15

, the first is the largest and the last is the small-
est, so

√
2 + e ≈ [ 200 61

48 15 ] ≈ [4, 6].
The maximum error here is fairly high

(
200
48
− 61

15
= 1

10

)
. Suppose we wish to im-

prove, by improving our estimate for e. So, consider e ≈ [2, 1; 2, 1; 1, 4] = [ 11 8
4 3 ] [

5 1
4 1 ].

We update [ 5 4
1 1 ] [

200 83
147 61 ] = [ 1588 659

347 144 ], and [ 5 4
1 1 ] [

48 20
36 14 ] = [ 384 160

84 35 ]. Now we get√
2 + e ≈ [ 1588 144

384 35 ], which is [4, 7; 2, 1; 1, 2], with maximum error less than 1
47

.
Now let’s calculate

√
2 × e. We have [ 5 1

4 1 ]
T
[ 11 8
4 3 ]

T
[ 1 0
0 0 ] [

17 7
12 5 ] = [ 1479 609

323 133 ],
while the second matrix is [ 384 160

84 35 ] as before. We find
√
2 × e ≈ [ 1479 133

384 35 ] ≈
[3, 1; 5, 1; 2, 1; 3, 1], with maximum error less than 1

19
.

By comparison, suppose we instead tried with decimals.
√
2 ≈ 1.4 and e ≈ 2.7,

so we would calculate
√
2 × e ≈ 1.4 × 2.7 = 3.78. How many of those digits can

we trust? Is the first digit 3 or 4 or even something else? Is the second digit 7 or 8 or
completely unknown? Is the third digit 8?

To be fair, continued fraction computations do have limitations. Rather than a sin-
gle digit, the terms can grow arbitrarily large, which creates its own problems and
reduces computational efficiency. These terms can be kept smaller through computa-
tional tricks (see, e.g., [5]). In addition, the matrix tools needed are too sophisticated
for most 10 year olds, so decimal notation has its place pedagogically. Nevertheless,
we hope to see greater adoption of continued fraction notation in the future.
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