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Abstract. A numerical semigroup S is a cofinite, additively-closed subset of
Z≥0 that contains 0, and a factorization of x ∈ S is a k-tuple z = (z1, . . . , zk)

where x = z1a1 + · · · + zkak expresses x as a sum of generators of the semi-

group S = ⟨a1, . . . , ak⟩. Much of the study of non-unique factorization centers
on factorization length z1 + · · · + zk, which coincies with the ℓ1-norm of z

as the k-tuple. In this paper, we study the ℓ∞-norm and ℓ0-norm of factor-

izations, viewed as alternative notions of length, with particular focus on the
generalizations ∆∞(x) and ∆0(x) of the delta set ∆(x) from classical factor-

ization length. We prove that the ∞-delta set ∆∞(x) is eventually periodic as
a function of x ∈ S, classify ∆∞(S) and the 0-delta set ∆0(S) for several well-

studied families of numerical semigroups, and identify families of numerical

semigroups demonstrating ∆∞(S) and ∆0(S) can be arbitrarily long intervals
and can avoid arbitrarily long subintervals.

1. Introduction

A numerical semigroup is a cofinite, additively closed set S ⊆ Z≥0 containing 0.
We often specify a numerical semigroup via a list of generators, i.e.,

S = ⟨a1, . . . , ak⟩ = {z1a1 + · · ·+ zkak : zi ∈ Z≥0}.
As ubiquitous mathematical objects, numerical semigroups arise in countless set-
tings across the mathematics spectrum; see [3, 21] for a thorough introduction.
Most notably for this manuscript, numerical semigroups arise frequently in factor-
ization theory [13] and discrete optimization [22].

A factorization of an element x ∈ S is an expression

x = z1a1 + · · ·+ zkak

of x with each zi ∈ Z≥0. The support and length of a factorization z are

supp(z) = {i : zi > 0}, and ℓ1(z) = z1 + · · ·+ zk,

respectively. We denote by

Z(x) = {z ∈ Zk
≥0 : x = z1a1 + · · ·+ zkak} and L(x) = {ℓ1(z) : z ∈ Z(x)}

the set of factorizations and length set of x, respectively. Factorization lengths are a
cornerstone of factorization theory, and numerous combinatorial invariants derived
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from length sets used to quantify and compare the non-uniqueness of factorizations
across rings and semigroups [12]. One of the more popular such invariants is the
delta set, which is defined on semigroup elements as

∆(x) = {ci − ci−1 : i = 2, . . . , r} where L(x) = {c1 < · · · < cr},

and defined on semigroups as ∆(S) =
⋃

x∈S ∆(x). For numerical semigroups,
∆(x) is known to be eventually periodic as a function of x [8], and ∆(S) is more
varied than for some other well-studied families of semigroups [4], such as Krull
monoids [7].

In this paper, we study the 0-length and ∞-length of factorizations z, which
are

ℓ0(z) = | supp(z)| and ℓ∞(z) = max(z1, . . . , zk),

respectively. For each p ∈ {0, 1,∞}, we define the p-length set of x as

Lp(x) = {ℓp(z) : z ∈ Z(x)}.

(when p = 1, we recover the classical definitions). In discrete optimization, factor-
izations achieving minimal 0-length are known as sparse solutions and have been
studied in the context of numerical semigroups [1] as well as for more general semi-
groups [5, 15]. Additionally, the asymptotic behavior of ∞-length was recently
studied in [9], along with the extremal ℓp-norms of factorizations for p ∈ [1,∞)∩Z.

In this paper, we study the p-delta set of x, defined as

∆p(x) = {ci − ci−1 : i = 2, . . . , r} where Lp(x) = {c1 < · · · < cr},

and the p-delta set of S, defined as ∆p(S) =
⋃

x∈S ∆p(x).
The contributions of this manuscript are two-fold. First, we prove several

structural results about the set L∞(x) for large elements x ∈ S. Our results are
reminiscent of the structure theorem for sets of length, which drives much of the
study of factorization theory [11, 12] and a specialized version of which was recently
proven for numerical semigroups [16]. We derive as a consequence that ∆∞(x) is
an eventually periodic function of x ∈ S (Theorem 2.6), a result that is also known
for the classical delta set [8] and joins a vast literature of eventual-peridicity results
for large numerical semigroup elements [18].

Second, we characterize ∆∞(S) and ∆0(S) for several well-studied families
of numerical semigroups, and demonstrate via explicit families of numerical semi-
groups that ∆∞(S) and ∆0(S) can each be arbitrarily long intervals and in general
can contain arbitrarily long “gaps”. Our results lead us to make the following
conjecture.

Conjecture 1.1. For every finite set D ⊂ Z≥1 with 1 ∈ D, there exists
numerical semigroups S and S′ with ∆0(S) = D and ∆∞(S′) = D.

This part of our work is motivated by the delta set realization problem [10],
which makes an analogous claim for the classical delta set ∆(S). The delta set
realization problem is known to be difficult, in part because proving a given integer
lies outside of ∆(S) necessitates a large amount of control over the factorization
structure of S; see [4] for examples. Given this, and the technical nature of our
arguments in Sections 3 and 4, we suspect Conjecture 1.1 to be difficult in general.
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2. A structure theorem for sets of ∞-length

Notation 2.1. Throughout this paper, S = ⟨a1, . . . , ak⟩ denotes a numerical
semigroup with minimal generators a1 < a2 < · · · < ak. Additionally, throughout
this section,

A = a1 + · · ·+ ak, gi = gcd({aj : i ̸= j}), and Si = ⟨ 1
gi
aj : j ̸= i⟩

for each i. Additionally, for each i, fix a′i ∈ Z with a′iai ≡ 1 mod gi, let

Z(x, i) = {z ∈ Z(x) : zi = ℓ∞(z)} and L∞(x, i) = {ℓ∞(z) : z ∈ Z(x, i)},

and let

L∞(x, i) = maxL∞(x, i) and l∞(x, i) = minL∞(x, i).

This section contains several structural results concerning the sets L∞(x),
L∞(x, i), and ∆∞(x) for large x ∈ S. We briefly outline these results here.

• We prove in Theorem 2.3 that each L∞(x, i) forms what is known as
an almost arithmetic sequence (AAP) (i.e., an arithmetic sequence with
some missing values near either end), a central ingredient to the classical
structure theorem for sets of length [11].

• We prove that in the AAP description of L∞(x, i), the “missing values”
near either end depend only on the equivalence class of x modulo cetain
products of the ai’s and gi’s (Theorem 2.4). This result is reminiscent of
[16, Theorem 4.2], a more detailed version of the structure theorem for
sets of length recently proven for numerical semigroups.

• Proposition 2.5 and Theorem 2.6 are the culmination of these results,
collecting the conclusions drawn about ∆∞(x) for large x and ∆∞(S).

The depiction in Figure 1 illustrates how the structure of each L∞(x, i) for large x
contributes to that of L∞(x) and ∆∞(x).

Recall that the Frobenius number of S is F(S) = max(Z≥0 \ S), and the Apéry
set of S with respect to a nonzero element m ∈ S is

Ap(S;m) = {n ∈ S : n−m /∈ S}.

It is known Ap(S;m) = {0, w1, . . . , wm−1}, where each wi ≡ i mod m is the smallest
element of S in its equivalence class modulo m.

Lemma 2.2. For ever x ∈ S, the following inequalities hold:

(a) 1
Ax ≤ l∞(x) ≤ 1

Ax+ ak; and

(b) for each i, 1
ai
x− kak ≤ L∞(x, i) ≤ 1

ai
x.

Proof. Letting z ∈ Z(x) with ℓ∞(z) = l∞(x), we see

x = z1a1 + · · ·+ zkak ≤ ℓ∞(z)a1 + · · ·+ ℓ∞(z)ak = l∞(x)A.

Next, write x = a + qA for a ∈ Ap(S;A). We claim l∞(a) ≤ ak. Indeed, by
way of contradiction, fix a factorization z ∈ Z(a) with ℓ∞(z) = l∞(a), and assume
some zj > ak. Some z′i = 0 since a ∈ Ap(S;A), so trading ai copies of aj for aj
copies of ai yields a factorization z′ ∈ Z(a) with strictly fewer copies of aj and
no new coordinates larger than ak. After applying such a trade to each maximal
entry in z, we obtain a factorization z′ with ℓ∞(z′) < ℓ∞(z) = l∞(a), which is a
contradiction.
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L∞(x, 1)

L∞(x, 1)−B1

g1

l∞(x) + ak

l∞(x, 1)

L∞(x, 2)

L∞(x, 2)−B2

g2

l∞(x) + ak

l∞(x, 2)

Region (iii) in
Proposition 2.5

g1 Spacing

Region (ii) in
Proposition 2.5

[1,min(g1, g2)]
Spacing

Region (i) in
Proposition 2.5

For all x ≫ 0, gaps of every
size in [1,min(g1, g2)] occur

L∞(x, 3)

L∞(x, k)

l∞(x)

Figure 1. Diagram of ∞-length set elements for large x ∈ S,
where the Bi are defined in Theorem 2.3

Letting z ∈ Z(a) with ℓ∞(z) = l∞(a), [9, Theorem 2.6] implies the factorization
z′′ = (z1 + q, . . . , zk + q) of x = a+ qA has l∞(x) = ℓ∞(z′′) ≤ q + ak. Thus,

l∞(x) ≤ q + ak = 1
A (x− a) + ak ≤ 1

Ax+ ak,

Proceeding to part (b), suppose z ∈ Z(x) satisfies ℓ∞(z) = zi = L∞(x, i). Then

L∞(x, i)ai ≤ L∞(x, i) +
∑
j ̸=i

zjaj = x.

Additionally, we must have zj < ai for j ̸= i, as otherwise one could trade ai copies
of aj for aj copies of ai and constradict the maximality of zi. As such,

x ≤ L∞(x, i)ai +
∑
j ̸=i

zjaj < L∞(x, i)ai +
∑
j ̸=i

aiak ≤ L∞(x, i)ai + kaiak

from which the last remaining inequality is immediately obtained. □

Theorem 2.3. For each i = 1, . . . , k, there exists Bi ∈ Z such that

[ 1Ax+ ak,
1
ai
x−Bi] ∩ (giZ+ a′ix) ⊆ L∞(x, i) ⊆ giZ+ a′ix.

Proof. The second containment holds since ℓ ∈ L∞(x, i) implies x−ℓai ∈ giSi.
Define

Bi =
1
ai
gi(F (Si) + 1)

and fix ℓ ∈ giZ+ a′ix with 1
Ax+ ak ≤ ℓ ≤ 1

ai
x−Bi. Since

x− ℓai = ai(
1
ai
x− ℓ) ≥ gi(F (Si) + 1),
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we have x − ℓai ∈ giSi. Moreover, we claim x − ℓai has a factorization in giSi of
∞-length at most ℓ. Indeed, notice that

x− ℓai + ak(A− ai) ≤ x+ akA− ℓai = ( 1
Ax+ ak)A− ℓai ≤ ℓ(A− ai),

from which we obtain

1
A−ai

(x− ℓai) + max({aj : j ̸= i}) ≤ 1
A−ai

(x− ℓai) + ak ≤ ℓ.

Now applying Lemma 2.2 to giSi implies x − ℓai has a factorization in giSi of
∞-length at most ℓ, which completes the proof. □

Theorem 2.4. Fix B,B′ > 0. For all x ≫ 0, we have

L∞(x+ ai, i) ∩ [ 1
ai
(x+ ai)−B,∞) = 1 +

(
L∞(x, i) ∩ [ 1

ai
x−B,∞)

)
for each i, as well as

L∞(x+A) ∩ [0, 1
A (x+A) +B′] = 1 +

(
L∞(x) ∩ [0, 1

Ax+B′]
)

In particular, these hold whenever x > a2iC + aiB and x > 1
ai
A(A− ai)B

′, respec-

tively, where C = ⌈ 1
aj
(B + 1)⌉.

Proof. One can readily check z ∈ Z(x, i) implies z + ei ∈ Z(x + ai, i), which
shows one containment in the first equality. For the converse direction, we first
claim any factorization z ∈ Z(x, i) with ℓ∞(z) = zi ≥ 1

ai
(x + ai) − B has zi > zj

for all j ̸= i. Indeed, if zj = zi for some j, then

zj ≥ 1
ai
x−B > aiC +B −B ≥ aiC,

so trading aiC copies of aj in z for ajC copies of ai yields a factorization in Z(x, i)
with i-th coordinate

zi + ajC = zi + aj⌈ 1
aj
(B + 1)⌉ > 1

ai
x−B +B = 1

ai
x

which is impossible by Lemma 2.2(b). Having now proven the claim, we conclude
any z′ ∈ Z(x+ ai, i) has z

′ − ei ∈ Z(x, i), and the first equality is proven.
For the second equality, any z ∈ Z(x) has z′ = z + e1 + · · · + ek ∈ Z(x + A).

For the reverse containment, we claim any z ∈ Z(x) with ℓ∞(z) ≤ 1
Ax+B′ has no

zero entries. Indeed, if some zi = 0, then

x =
∑
j ̸=i

zjaj ≤
∑
j ̸=i

( 1
Ax+B′)aj = ( 1

Ax+B′)(A− ai) = x− 1
Aaix+ (A− ai)B

′

< x− (A− ai)B
′ + (A− ai)B

′ = x

a contradiction. As such, any factorization z′ ∈ Z(x+A) with ℓ∞(z′) ≤ 1
Ax+B′+1

has z′ − e1 − · · · − ek ∈ Z(x), thereby completing the proof. □

Proposition 2.5. For all x ≫ 0, we have [1,min(g1, g2)] ∪ {g1} ⊆ ∆∞(x).
Moreover, if ℓ < ℓ′ are successive elements of L∞(x) with

ℓ′ − ℓ /∈ [1,min(g1, g2)] ∪ {g1},

then at least one of ℓ and ℓ′ lies in one of the following intervals:

(i) [ 1Ax, 1
Ax+ ak]; (ii) [ 1

a2
x−B2,

1
a2
x]; or (iii) [ 1

a1
x−B1,

1
a1
x].
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Proof. First, if x is large enough that ( 1
a1
x − B1) − 1

a2
x > 3g1, then by

Lemma 2.2(b),

L∞(x) ∩ ( 1
a2
x, 1

a1
x−B1) = L∞(x, 1) ∩ ( 1

a2
x, 1

a1
x−B1)

contains at least 2 lengths, and any two consecutive lengths therein must have
difference g1 ∈ ∆∞(x) by Theorem 2.3.

Analogously, if x is large enough that ( 1
a2
x − B2) − 1

a3
x > 2g1g2, then by

Lemma 2.2(b) and Theorem 2.3,

L∞(x) ∩ ( 1
a3
x, 1

a2
x−B2) =

(
L∞(x, 1) ∪ L∞(x, 2)

)
∩ ( 1

a3
x, 1

a2
x−B2)

=
(
(g1Z+ a′1x) ∪ (g2Z+ a′2x)

)
∩ ( 1

a3
x, 1

a2
x−B2),

within which successive elements achieve each difference in [1,min(g1, g2)] by the
Chinese Remainder Theorem since gcd(g1, g2) = gcd(a1, . . . , ak) = 1.

For the final claim, by Theorem 2.3, aside from the three claimed intervals, the
only subinterval of [ 1Ax, 1

a1
x] not containing an arithmetic sequences of step size

min(g1, g2) is [ 1
a2
x, 1

a1
x − B1], whose lengths form an arithmetic sequence of step

size g1. □

Theorem 2.6. If x ≫ 0, then ∆∞(x+p) = ∆∞(x), where p = lcm(a1, g1a2, A).

Proof. We begin by considering the intervals (i), (ii), and (iii) in Proposi-
tion 2.5. Let

R1(x) = [ 1Ax, 1
Ax+ (ak + g1)] ∩ L∞(x),

R2(x) = [ 1
a2
x− (B2 + g1),

1
a2
x+ g1] ∩ L∞(x),

R3(x) = [ 1
a1
x− (B1 + g1),

1
a1
x] ∩ L∞(x).

Applying Theorem 2.4 with B′ = ak+g1 gives R3(x+p) = R3(x)+
1
Ap, and letting

B = B1 + g1, we have

R1(x) = [ 1
a1
x−B, 1

a1
x] ∩ L∞(x, 1)

by Lemma 2.2(b), so R1(x+ p) = R1(x) +
1
a1
p. Additionally, by Theorem 2.3,

R2(x) =
(
[ 1
a2
x−B, 1

a2
x] ∩ L∞(x, 2)

)
∪
(
[ 1
a2
x−B, 1

a2
x+ g1] ∩ (g1Z+ a′1x)

)
for B = B2 + g1. Clearly g1Z+ a′1(x+ p) = g1Z+ a′1x, and since g1 | 1

a2
p,(

g1Z+ a′1(x+ p)
)
+ 1

a2
p = g1Z+ a′1x

as well. As such, R2(x+ p) = R2(x) +
1
a2
p once again by Theorem 2.4.

Lastly, by Proposition 2.5 any successive lengths in L∞(x) or L∞(x + p) not
residing in one of the above intervals must have difference in [1,min(g1, g2)]∪{g1},
which is a subset of both L∞(x) and L∞(x+ p) by Proposition 2.5. □

Corollary 2.7. Fix B > 0. For all x ≫ 0, we have

ℓ ∈ L∞(x) ∩ [ 1
a1
x−B, 1

a1
x] if and only if x− ℓa1 ∈ g1S1 ∩ [0, a1B].

In particular, ∆(g1S1 ∩ (a1Z+ j)) ⊆ ∆∞(S) for each j.
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Proof. As in the proof of Theorem 2.3, we have ℓ ∈ L∞(x, 1) if and only if
(i) x−ℓa1 ∈ g1S1 and (ii) there exists a factorization of x−ℓa1 in g1S1 with∞-length
at most ℓ. Tracing through the proof of Theorem 2.3, so long as condition (i) holds,
condition (ii) holds whenever ℓ > 1

Ax+ak, which is certainly the case if ℓ > 1
a1
x−B

for x ≫ 0. Moreover,

x− ℓa1 < x− ( 1
a1
x−B)a1 = a1B.

As such, Lemma 2.2(b) implies the frst claim, and the second claim then follows
upon unraveling definitions. □

3. Some families of ∞-delta sets

In this section, we examine the set ∆∞(S) for several families of numeri-
cal semigroups. We characterize the ∞-delta set for supersymmetric numerical
semigroups [6], and numerical semigroups whose generators form an arithmetic se-
quence [17] or a geometric sequence [19, 23]. We also demonstrate that ∆∞(S)
can be an arbitrarily long interval (Theorem 3.2) and have arbitrarily long gaps
(Theorem 3.3).

Many of our arguments in this section and the next utilize trades, presentations,
and Betti elements. We briefly review the relevant concepts here, though the reader
is encouraged to see [3, Chapter 5] and [20] for a thorough introduction.

Define an equivalence relation ∼ on Zk
≥0 that sets z ∼ z′ whenever z, z′ ∈ Z(x)

are factorizations of the same element x ∈ S. We call each relation z ∼ z′ between
facatorizations of disjoint support a trade of S, and sometimes identify the difference
z − z′ ∈ Zk with the trade z ∼ z′. A presentation of S is a collection ρ of trades
with the property that for any x ∈ S and any z, z′ ∈ S, there exists a chain of
factorizations

z = y1 ∼ y2 ∼ · · · ∼ yr = z′

wherein yi − yi−1 ∈ ρ or yi−1 − yi ∈ ρ for each pair of sequential factorizations
yi−1 and yi. A presentation is minimal if it is minimal with respect to containment
among all presentations for S. It is known that any two minimal presentations ρ
and ρ′ for S have the same number of trades, and in fact the set

Betti(S) = {z1a1 + · · ·+ zkak : z − z′ ∈ ρ}
of Betti elements is independent of the choice of minimal presentation ρ.

Theorem 3.1. Let S = ⟨a1, . . . , ak⟩ with a1 < · · · < ak.

(a) If a < b are coprime and each ai = ak−1−ibi−1, then ∆∞(S) = {1, 2, . . . , b}.
(b) If p1, . . . , pk ∈ Z≥1 are pairwise coprime with p1 > · · · > pk, T = p1 · · · pk, and

each ai =
1
pi
T , then ∆∞(S) = {1, 2, . . . , p1}.

Proof. For part (a), the trades bei ∼ aei+1 for i = 1, . . . , k−1 form a minimal
presentation for S by [14, Theorem 8], so max∆∞(S) ≤ b. Now, if 1 ≤ c ≤ a, then

Z((b+ a− c)a1) = {(b+ a− c)e1, (a− c)e1 + ae2}
so c ∈ ∆∞(S). Moreover, if a < c ≤ b, then

Z(ca2) = {(be1 + (c− a)e2, ce2},
so again c ∈ ∆∞(S). Thus, ∆∞(S) = {1, 2, . . . , b}.

For part (b), the trades pi+1ei ∼ piei+1 for i = 1, . . . , k − 1 form a minimal
presentation for S by [6], so max∆∞(S) ≤ p1. Using a similar argument to part (a),
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we have ∆∞((p1 + p2 − c)a1) = {c} whenever 1 ≤ c ≤ a and ∆∞(ca2) = {c}
whenever p2 < c ≤ p1. Thus, ∆∞(S) = {1, 2, . . . , p1}. □

Theorem 3.2. Let S = ⟨a, a+d, . . . , a+kd⟩ with 2 ≤ k < a and gcd(a, d) = 1,
and write a− 1 = qk + r for q, r ∈ Z≥0 with 0 ≤ r < k. Then

∆∞(S) = {1, 2, . . . , q + d+ 1}.

Proof. In what follows, write ai = a + ik for i ∈ [0, k], and for x ∈ S, write
factorizations z ∈ Z(x) as z = (z0, . . . , zk) = z0e0+ · · ·+zkek. Before beginning the
proof, we recall some facts about arithmetical numerical semigroups; see [2, 17].
Each x ∈ S has ℓ ∈ L1(x) if and only if

x = ℓa+ bd with 0 ≤ b ≤ kℓ,

as for any factorization z ∈ Z(x) with ℓ1(z) = ℓ, we can write

x = (z0 + · · ·+ zk)a+ (z1 + 2z2 + · · ·+ kzk)d

with b = z1 + 2z2 + · · ·+ kzk. Moreover,

ℓ− ⌈ 1
k b⌉ ≥ z0 = ℓ− (z1 + · · ·+ zk) ≥ ℓ− b,

with equality on the right if z2 = · · · = zk = 0.
We now proceed with the proof. First, suppose 1 ≤ G ≤ d. We see

x = (a+ d)a+ (d−G)(a+ d) = (a+ d−G)(a+ d)

are factorizations z, z′ ∈ Z(x), respectively, with ∞-lengths ℓ∞(z) = a + d and
ℓ∞(z′) = a + d −G. Now, since ℓ∞(z′) = ℓ1(z

′) = z′1, any factorization z′′ ∈ Z(x)
with ℓ∞(z′′) > ℓ∞(z′) must have ℓ1(z

′′) > ℓ1(z
′). This means ℓ1(z

′′) ≥ ℓ1(z), and
letting b = z′′1 + 2z′′2 + · · ·+ kz′′k , any such factorization must have

z′′0 ≥ ℓ1(z
′′)− b ≥ (a+ 2d−G)− (d−G) = a+ d

by the first paragraph above. As such, G ∈ ∆∞(x).
Next, suppose d ≤ G ≤ d+ q + 1. We see

x = (a+G)a = (G− d)a+ a(a+ d)

are factorizations z, z′ ∈ Z(x), respectively, with ℓ∞(z) = a+G and ℓ∞(z′) = a. Fix
a factorization z′′ ∈ Z(x) with ℓ∞(z′′) < ℓ∞(z), and let b = z′′1 + 2z′′2 + · · · + kz′′k .
Since z = (a + G)e1, we must have ℓ1(z

′′) < ℓ1(z) = a + G. As such, we have
ℓ1(z

′′) ≤ a+G− d = ℓ1(z
′) and b ≥ a, meaning

z′′0 ≤ ℓ1(z
′′)− ⌈ 1

k b⌉ ≤ (a+G− d)− ⌈ 1
ka⌉ ≤ a+G− d− q − 1 ≤ a.

Additionally, if z′′j ≥ a for some j ≥ 1, then∑
i ̸=j

z′′i ai = x− z′′j aj < x− aaj ≤ x− a(a+ d) = (G− d)a ≤ (q + 1)a,

and all factorizations of such an element have equal 1-length. As such, since

x = (G− jd)a+ a(a+ jd),

we must have ℓ1(z
′′) = ℓ1(z

′)− jd, meaning z′′ coincides with the above factoriza-
tion. Thus ℓ∞(z′′) ≤ a, thereby ensuring G ∈ ∆∞(x). □

Theorem 3.3. Fix m ≥ 3. If S = ⟨3, 3m+ 1, 3m+ 2⟩, then
∆∞(S) = {1, 2, . . . ,m+ 1} ∪ {2m, 2m+ 1}.
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Proof. Since S has max embedding dimension (see [21, Chapter 3]):

(i) the trades

(2m+ 1)e1 ∼ e2 + e3, me1 + e3 ∼ 2e2, and (m+ 1)e1 + e2 ∼ 2e3

comprise a minimal presentation for S;
(ii) for each x ∈ S, the unique factorization z = (a, b, c) ∈ Z(x) with ℓ∞(z)

maximal in L∞(x) is also the unique factorization with b+ c ≤ 1; and
(iii) for each a ≥ 0, the factorizations (a, 1, 1) and (a+2m− 1, 0, 0) of the element

x = 3(a+ 2m− 1) have the two highest ∞-lengths in L∞(x).

Fix x ∈ S and z = (a, b, c) ∈ Z(x). Suppose z does not have maximal ∞-
length, and let G be minimal with ℓ∞(z) +G ∈ L∞(x). By (iii), if b = c = 1, then
G ≥ 2m. Otherwise, by (ii) either b ≥ 2 or c ≥ 2. If b ≥ 2, then fixing q ∈ Z
with b − 2q ∈ {0, 1} and performing the second trade in (i) q times yields a chain
of factorizations

(a, b, c) ∼ (a+m, b− 2, c+ 1) ∼ · · · ∼ (a+ qm, b− 2q, c+ q),

wherein each factorization differs in ∞-length from the previous factorization by at
most m, and the final factorization in which has strictly larger ∞-length than z.
As such, we have G ≤ m. By an analogous argument, if c ≥ 2, then G ≤ m + 1.
This proves m+ 2, . . . , 2m− 1 /∈ ∆∞(S).

Now, by (i), we have max∆∞(S) ≤ 2m+ 1. We can see by inspection that

Z(6m+3) = {(2m+1, 0, 0), (0, 1, 1)} and Z(6m+6) = {(2m+2, 0, 0), (1, 1, 1)},
so 2m, 2m+ 1 ∈ ∆∞(S). Also by inspection,

Z(6m+ 8) = {(m+ 2, 0, 1), (2, 2, 0)} and Z(6m+ 10) = {(m+ 3, 1, 0), (2, 0, 2)},
so m,m+ 1 ∈ ∆∞(S). Lastly, for each G ∈ {1, . . . ,m− 1}, we have

(0, 0, G+ 1), (m+ 1, 1, G− 1) ∈ Z(x)

for x = (G+ 1)(3m+ 2). Fix a factorization z = (a, b, c) ∈ Z(x). Since

3a = x− (3m+ 1)b+ (3m+ 2)c = (G+ 1− b− c)(3m+ 2) + b,

we must have b+c ≤ G+1. If b+c = G+1, then a = 1
3b < G+1, so ℓ∞(z) ≤ G+1.

If b+ c ≤ G, then

3a ≥ (G+ 1− b− c)(3m+ 2) ≥ 3m+ 2

so ℓ∞(z) ≥ a ≥ m+ 1. This proves m−G ∈ ∆∞(S). □

4. Some families of 0-delta sets

In a similar vein to the prior section, in Theorems 4.2 and 4.3 we charac-
terize ∆0(S) for numerical semigroups S residing in several well-studied families,
including maximal embedding dimension numerical semigroups [21, Chapter 3],
supersymmetric numerical semigroups [6], 3-generated numerical semigroups [21,
Chapter 10], and numerical semigroups generated by generalized arithmetic se-
quences [17]. We also identify two families of numerical semigroups achieving no-
table extremal behavior (Theorems 4.4 and 4.5). First, we demonstrate that the
structure of L0(x) for large x ∈ S differs substantially from that of L∞(x) detailed
in Section 2.

Theorem 4.1. For all x ≫ 0, we have ∆0(x) = {1}. In particular, 1 ∈ ∆0(S).
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Proof. For fixed I ⊆ {1, . . . k} nonempty, and letting d = gcd(ai : i ∈ I),
x ∈ S has a factorization z ∈ Z(x) with supp(z) = I if and only if d | x and

1
d (x−

∑
i∈I ai) > F(⟨ 1dai : i ∈ I⟩).

As such, for x ≫ 0, if x has a factorization with support I, then x also has a
factorization with support J for every J ⊇ I. Thus, L0(x) is an interval and
∆0(x) = {1}. □

Theorem 4.2. The following hold.

(a) If S has a minimal presentation ρ in which every trade if between factorizations
with singleton support, then ∆0(S) = 1. In particular, this occurs whenever S
is supersymmetric or generated by a geometric sequence.

(b) If S = ⟨m, a1, . . . , am−1⟩ with m ≥ 3 and each ai ≡ i mod m (i.e., S is maximal
embedding dimension), then ∆0(S) = {1, 2}.

(c) If S = ⟨a, ah+d, ah+2d, . . . , ah+kd⟩ with h ≥ 1, 2 ≤ k < a, and gcd(a, d) = 1
(i.e., S is generated by a generalized arithmetic sequence), then ∆0(S) = {1, 2}.

Proof. Part (a) follows from the fact that any two factorizations of an element
x ∈ S are connected by a chain of factorizations in which successive factorizations
z, z′ differ by a trade in ρ, and thus satisfy |ℓ0(z)−ℓ0(z

′)| ≤ 1. As such, ∆0(x) = {1}.
The claims about supersymmetric numerical semigroups and semigroups generated
by geometric sequences immediately follow [6, 14].

For part (b), by [21, Theorem 8.30] S has a minimal presentation in which
each trade has the form

ei + ej ∼ ek + ce0 with i+ j ≡ k mod m and c ∈ Z≥1,

so by similar reasoning to part (a), ∆0(S) ⊆ {1, 2}. Moreover, since m ≥ 3,
applying the trade with i = 1 and j = 2 to the factorization z = e0 + · · · + em−1

yields a factorization z′ with ℓ0(z
′) = m − 2. Moreover, no other factorization z′′

can have ℓ0(z
′′) = m − 1, as then the trade z ∼ z′′ would be between distinct

factorizations for a minimal generator of S.
For part (c), in the minimal presentation for S presented in [17, Theorem 2.16],

each trade is between factorizations with 0-length at most 2, so ∆0(S) ⊆ {1, 2}.
Moreover, writing a− 1 = qk + r with 0 ≤ r < k, the minimal presentation in [17]
also implies

x = a+ (ah+ (r + 1)d) + q(ah+ kd) = a(d+ h(q + 1))

are the only two factorizations of x, so ∆0(x) = {2}. □

We next characterize ∆0(S) when S is 3-generated. Recall that an expression

S = t′S′ + t′′S′′ with S′ = ⟨b1, . . . , br⟩ and S′′ = ⟨c1, . . . , ck−r⟩

is called a gluing if t′ ∈ S′′\{c1, . . . , ck−r}, t′′ ∈ S′\{b1, . . . , br}, and gcd(t′, t′′) = 1;
see [21, Chapter 9] for more on gluings. Note that such an expression for S need
not be unique. In particular, if S = ⟨a1, a2, a3⟩, then there can be up to 3 such
expressions for S as a gluing, each of the form S = ⟨ai⟩+ t′S′ for some i ∈ {1, 2, 3}.

Theorem 4.3. Suppose S = ⟨a1, a2, a3⟩. If S has at most 1 expression as a
gluing, then ∆0(S) = {1, 2}. Otherwise, ∆0(S) = {1}.
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Proof. If S has at least 2 distinct expressions S = ⟨ai⟩ + t′S′ = ⟨aj⟩ + t′′S′′

as a gluing, then we can write

S = ⟨t′b1, t′t′′b2, t′′b3⟩.
Since t′b1 ∈ S′ = ⟨t′b2, b3⟩, there exist z2, z3 ∈ Z≥0 with t′b1 = z2t

′b2 + z3b3,
and since gcd(t′, b3) = 1, we must have t′ | z2. As such, b1 = z1b2 + z2b3 and
thus b1 ∈ ⟨b2, b3⟩. By similar reasoning, we know b3 ∈ ⟨b1, b2⟩. Assuming b1 ≤ b3
without loss of generality, this is only possible if b1 = b3 or b2 | b1. In particular, t′b1
has a factorization in S′ with singleton support. As such, by [21, Theorem 9.2], S
has a minimal presentation within which every factorization has singleton support,
so ∆0(S) = {1} by Theorem 4.2(a).

Conversely, suppose S = ⟨a1⟩+ tS′ with S′ = ⟨b1, b2⟩ is the only expression of
S as a gluing. Then writing a1 = z1b1 + z2b2, we cannot have z2 = 0, as otherwise

S = ⟨z1b1, t′b1, t′b2⟩ = ⟨t′b2⟩+ b1⟨z1, t′⟩
is a second expression of S as a gluing. Analogously, z1 > 0. As such,

x = (t+ 1)a1 = a1 + z2t
′b1 + z3t

′b2

has L0(x) = {1, 3}, so ∆0(x) = {2}.
This leaves the case where S cannot be expressed as a gluing. By [21, Sec-

tion 10.3], S has a unique minimal presentation comprised of trades

c1e1 ∼ r12e2 + r13e3, c2e2 ∼ r21e1 + r23e3, and c3e3 ∼ r31e1 + r32e2

where each rij > 0 and each ck = rik + rjk for {i, j, k} = {1, 2, 3}. We consider
cases.

• If rij = rik = 1 for some i, then x = a1 + a2 + a3 has at least one
factorization without full support, and any such factorization must have
singleton support, so ∆0(x) = {2}.

• If rji ≥ 2 and rki ≥ 2 for some i, then

x = (ci + 1)ai = ai + rijaj + rikak

are the only factorizations of x, so ∆0(x) = {2}.
• If rji = rki = 1 for some i, then either rjk ≥ 2 and rkj ≥ 2, in which case

x = (cj + 1)aj = aj + rjiai + rjkak

are the only factorizations of x and ∆0(x) = {2}, or rjk = 1 or rkj = 1,
meaning we are in the first case above.

• In all other cases, up to reordering i, j, and k, we have rij = rjk = rki = 1
while rji, rkj , rik ≥ 2. In this case,

x = (cj + 1)aj = aj + rjiai + ak

are the only factorizations of x, so ∆0(x) = {2}.
In all cases above, we conclude ∆0(S) = {1, 2}. □

Thus far, all semigroups S presented have max∆0(S) ≤ 2. We close by present-
ing two families of numerical semigroups exhibiting more interesting behavior: one
demonstrating ∆0(S) can be an arbitrarily large interval (Theorem 4.4), and an-
other demonstrating ∆0(S)\ [1,max∆0(S)] can be arbitrarily large (Theorem 4.5).

Theorem 4.4. For each k ≥ 2, there exists a numerical semigroup S such that
∆0(S) = {1, 2, . . . , k − 1}.
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Proof. Fix distinct primes p1, p2 with p1, p2 > k. Let S2 = ⟨p1, p2⟩, so
∆0(S2) = {1}. Proceeding inductively, assume Si−1 = ⟨a1, . . . , ai−1⟩ has Betti
elements b1, . . . , bi−2 with Z(b1) = {p2e1, p1e2} and for each j ≥ 2,

Z(bj) = {pj+1ej+1, (k + 1− j)e1 + e2 + · · ·+ ej}

for some prime pj+1. Since each j ≤ k, we have ∆0(bj + aj+1) = {j} for each j.
Letting

ai = (k + 1− i)a1 + a2 + · · ·+ ai−1,

we see (i) the above factoriation of ai is not preceded (under the component-wise
partial order) by any factorizations of b1, . . . , bi−2 (meaning ai is uniquely factorable
in Si−1), and (ii) the above factorization of ai does not precede a factorization of
any bj . As such, choosing a prime pi > ai, the semigroup

Si = piSi−1 + ⟨ai⟩

is a gluing, so we have Betti(Si) = {pib1, . . . , pibi−2, piai} and

Z(piai) = {piei, (k + 1− i)e1 + e2 + · · ·+ ei−1}.

This ensures ∆0((pi + 1)ai) = {i− 1} and ∆0(Si) = {1, 2, . . . , i− 1}. Thus, at the
conclusion of this process, the semigroup Sk has ∆0(Sk) as claimed. □

Theorem 4.5. For k ≥ 16, there is a numerical semigroup S = ⟨a1, . . . , ak+1⟩
with ∆0(S) ∩ [ 78k, k] = {k − 1, k}.

Proof. Let S2 = ⟨2, 3⟩. Next, for each i = 3, . . . , k, let

Si = 2Si−1 + ⟨2ai−2 + ai−1⟩ where Si−1 = ⟨a1, . . . , ai−1⟩.

Lastly, let

S = Sk+1 = 2Sk + ⟨a1 + · · ·+ ak⟩ where Sk = ⟨a1, . . . , ak⟩.

As each Si is easily shown to be a gluing, the trades

2e2 ∼ 3e1, 2ek+1 ∼ e1 + · · ·+ ek, and 2ei ∼ 2ei−2 + ei−1 for 3 ≤ i ≤ k

form a minimal presentation ρ of S.
In what follows, write S = ⟨a1, . . . , ak+1⟩. We see by inspection that

Z(3ak+1) = {3ek+1, e1 + · · ·+ ek+1},

since no other trades in ρ can be performed, so in particular ∆0(3ak+1) = {k}
and ∆0(2ak+1) = {k − 1}. We claim every other x ∈ S with ∆0(x) nonempty
has max∆0(x) ≤ 7

8k. Indeed, any two factorizations of x can be connected by a
sequence of trades in ρ, and of such trades, the only one that can yield a change
in 0-length of more than 2 is the trade 2ek+1 ∼ e1 + · · · + ek. As such, consider
factorizations z, z′ ∈ Z(x) of the form

z = u+ e1 + · · ·+ ek and z′ = u+ 2ek+1

for some u ∈ Zk
≥0. By way of contradiction, suppose ℓ0(u) ≤ 1

8k, so that

ℓ0(z)− ℓ0(z
′) ≥ k − 1

8k = 7
8k.

First, suppose ui ≥ 1 for some i ≤ 1
2k, and fix j maximal with i + 2j ≤ k.

Performing the trade

2ei + ei+1 + ei+3 + · · ·+ ei+2j−1 ∼ 2ei+2j
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to z yields a factorization z′′ in which j ≥ 1
4k entries are strictly smaller than in z.

However, since ℓ0(u) ≤ 1
8k, at least

1
8k entries of z′′ must be zero. As such,

ℓ0(z)− ℓ0(z
′′) ≤ 1

4k and ℓ0(z
′′)− ℓ0(z

′) ≤ 7
8k.

Next, suppose ui ≥ 1 for 1
2k < i ≤ k. Performing the trade

2ei + ei−1 + ei−3 + ei−5 + · · · ∼ 2ei−1 + 2ei−3 + 2ei−5 + · · ·
∼ ei−2 + 2ei−4 + 3ei−6 + · · ·

to z yields a factorization z′′ in which at least 1
4k entries are strictly smaller than

in z. As in the previous case, we obtain

ℓ0(z)− ℓ0(z
′′) ≤ 1

4k and ℓ0(z
′′)− ℓ0(z

′) ≤ 7
8k.

Lastly, since x ̸= 2ak+1, 3ak+1, the only remaining case is when u = cak+1 with
c ≥ 2. In this case, one may performe the trade

4ek+1 ∼ 2e1 + 2e2 + · · ·+ 2ek

∼ 3ek−1 + 4ek−3 + 5ek−5 + · · ·

to obtain a factorization with at least 1
2k zero entries, which completes the proof.

□
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