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SOME ASYMPTOTIC RESULTS ON p-LENGTHS OF

FACTORIZATIONS FOR NUMERICAL SEMIGROUPS

AND ARITHMETICAL CONGRUENCE MONOIDS

SPENCER CHAPMAN, ELI B. DUGAN, SHADI GASKARI, EMI LYCAN,
SARAH MENDOZA DE LA CRUZ, CHRISTOPHER O’NEILL, AND VADIM PONOMARENKO

Abstract. A factorization of an element x in a monoid (M, ·) is an expression of
the form x = uz1

1
· · ·uzk

k for irreducible elements u1, . . . , uk ∈ M , and the length of
such a factorization is z1 + · · · + zk. We introduce the notion of p-length, a gen-
eralized notion of factorization length obtained from the ℓp-norm of the sequence
(z1, . . . , zk), and present asymptotic results on extremal p-lengths of factorizations
for large elements of numerical semigroups (additive submonoids of Z≥0) and arith-
metical congruence monoids (certain multiplicative submonoids of Z≥1). Our results,
inspired by analogous results for classical factorization length, demonstrate the types
of combinatorial statements one may hope to obtain for sufficiently nice monoids, as
well as the subtlety such asymptotic questions can have for general monoids.

1. Introduction

Given a cancellative, commutative monoid (M, ·), a factorization of x ∈ M is an
expression of the form

(1.1) x = uz1
1 · · ·uzk

k

where u1, . . . , uk ∈ M are distinct irreducible elements (or atoms) and z ∈ Z
k
≥1.

One of the primary goals of factorization theory is to characterize and quantify the
non-uniqueness of factorizations of monoid elements [11]. To this end, one of the
predominant invariants examined is a factorization’s length, which coincides with the
1-norm z1 + · · ·+ zk of z. A cornerstone of their study is the so-called structure the-
orem for sets of length, which has been shown to hold for large families of monoids
and provides a combinatorial description of the set of possible factorization lengths of
elements of the form xn for large n; see [10] for a survey of such results.

In this manuscript, we consider two particular families of monoids. The first, known
as arithmetical congruence monoids, are multiplicative submonoids of Z≥1 of the form

Ma,b = {1} ∪ {n ∈ Z≥1 : n ≡ a mod b}
for a, b ≥ 1 satisfying a2 ≡ a mod b. For instance, in

M1,4 = {1, 5, 9, 13, · · · },

Date: November 27, 2024.
1

http://arxiv.org/abs/2411.17010v1


2S. CHAPMAN, E. B. DUGAN, S. GASKARI, E. LYCAN, S. MENDOZA, C. O’NEILL, ANDV. PONOMARENKO

the elements 9, 21, and 49 are all atoms, and consequently 441 = 9 · 49 = 212 admits
two distinct factorizations (this particular monoid is known as the Hilbert monoid, as
he used it to exhibit non-unique factorization). Since their introduction in [6], arith-
metical congruence monoids (ACMs for short) have garnered some attention in the
factorization theory community as a source of “naturally-occuring” monoids with a
surprising propensity to exhibit pathological factorization behavior; see the survey [5]
for an overview of the known factorization properties of ACMs and a number of lin-
gering questions.

The second family of monoids are numerical semigroups, which are additive sub-
monoids of Z≥0 with finite complement. Any numerical semigroup S has finitely many
atoms g1, . . . , gk, in which case we write

S = 〈g1, . . . , gk〉 = {z1g1 + · · ·+ zkgk : z1, . . . , zk ∈ Z≥0}.
Note that, unlike ACMs, the operation on a numerical semigroup is addition; as such,
a factorization of n ∈ S is an additive expression of the form

n = z1g1 + · · ·+ zkgk

for some z ∈ Z
k
≥0. Numerical semigroups have long arisen in countless setting across the

mathematical spectrum, including combinatorics, algebra, number theory, polyhedral
geometry, and discrete optimization; we direct the reader to the monographs [4, 17] for
a thorough introduction to numerical semigroups.

In this manuscript, we consider notions of factorization length derived from ℓp-norms
for other values of p ∈ Z≥0∪{∞}. More specifically, given a general monoidM (written
multiplicatively), the p-length of the factorization in (1.1) is given by

ℓp(z) = zp1 + · · ·+ zpk

if p ∈ Z≥0, which if p > 0 coincides with (‖z‖p)p, and
ℓ∞(z) = ‖z‖∞ = max(z1, . . . , zk).

In the case p = 1, one obtains the usual notion of factorization length.

We focus our attention on the extremal p-lengths of factorizations for large monoid
elements, drawing inspiration from the results of [3] that, under minimal assumptions
on the monoid M and the element x ∈ M , the limits

lim
n→∞

supL(x)

n
and lim

n→∞

minL(x)

n

both exist, though the former need not be finite (here, L(x) denotes the set of (classical)
lengths of factorizations of x). Our study focuses on numerical semigroups (Section 2),
for which we derive asymptotic results of a combinatorial nature that are familiar in
this setting [15], and arithmetical congruence monoids (Section 3), wherein our results
demonstrate the subtlety of such asymptotic questions for more general monoids.
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function degree period leading coefficient
ℓm0 (n) 0 lcm(g1, . . . , gk)

ℓm1 (n) 1 gk 1/gk
ℓm2 (n) 2 g21 + · · ·+ g2k 1/(g21 + · · ·+ g2k)

ℓm∞(n) 1 g1 + · · ·+ gk 1/(g1 + · · ·+ gk)

ℓM0 (n) 0 1 k

ℓMp≥1(n) p g1 1/g1
ℓM∞(n) 1 g1 1/g1

Table 1. The eventually quasipolynomial attributes of ℓmp (n) and ℓMp (n)
for p ∈ [0,∞] over a numerical semigroup S = 〈g1, . . . , gk〉.

2. Numerical semigroups

Fix a numerical semigroup S = 〈g1, . . . , gk〉. Given z ∈ Z
k, define

ℓ∞(z) = max{z1, . . . , zk} and ℓp(z) = zp1 + · · ·+ zpk for p ∈ Z≥0,

and for p ∈ Z≥0 ∪ {∞}, define
ℓMp (n) = max{ℓp(z) : z ∈ Z(n)} and ℓmp (n) = min{ℓp(z) : z ∈ Z(n)}

for each n ∈ S, where

Z(n) = {z ∈ Z
k
≥0 : n = z1n1 + · · ·+ zknk}

is the set of factorizations of n in S.
For a fixed numerical semigroup, the asymptotic behavior of ℓmp (n) and ℓMp (n) often

take a particularly nice combinatorial form. We say a function f : Z≥0 → R is a
quasipolynomial if there exist periodic functions cd(n), cd−1(n), . . . , c0(n), with cd not
identically 0, such that

f(n) = cd(n)n
d + · · ·+ c1(n)n+ c0(n);

in this case, the degree of f is d and the period of f is the least common multiple
of the periods of the ci(n). We say f is eventually quasipolynomial if there exists a
quasipolynomial g(n) such that f(n) = g(n) for all n ≫ 0 (that is, for all but finitely
many n ∈ Z≥0).

Quasipolynomial functions often arise in the context of numerical semigroups; see [15]
for a survey of such results, and [8] for geometric interpretations of this phenomenon.
Theorems 2.1, 2.4, 2.6, 2.8, and 2.10 imply each of the functions in Table 1 are even-
tually quasipolynomial functions of n with the specified degree, period, and constant
leading coefficient.

Results for p = 0 and p = 1 appeared in [2, 7]; we state them here for completeness.
In what follows, let

F (S) = max(Z≥0 \ S)
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denote the Frobenius number of S.

Theorem 2.1. Fix a numerical semigroup S = 〈g1, . . . , gk〉.
(a) For n > (g1 − 1)gk, we have

ℓm1 (n) = ℓm1 (n− gk) + 1

As such, ℓm1 (n) is eventually quasilinear with period gk and leading coefficient 1
gk
.

(b) For n > (gk−1 − 1)gk, we have

ℓM1 (n) = ℓM1 (n− g1) + 1

As such, ℓM1 (n) is eventually quasilinear with period g1 and leading coefficient 1
g1
.

(c) For n > g2k, ℓ
m
0 (n) is periodic with period lcm(g1, . . . , gk).

(d) For n > F (S) + g1 + · · ·+ gk, we have ℓM0 (n) = k.

Proof. Parts (a) and (b) follow from [7, Theorem 4.3] and [7, Theorem 4.2], respectively.
Additionally, part (c) follows from [2, Theorem 12] and the bounds on F (S) in [16].
Lastly, part (d) follows from the fact that every specified values of n has a factorization
involving all of the generators of S. �

Next, we consider p = ∞. The results of [13] strengthen Theorem 2.1(a) and (b) to
include an interpretation of the values the periodic constant coefficient takes. Anal-
ogously, in addition to proving ℓm∞(n) and ℓM∞(n) are eventually quasipolynomial and
determining their leading coefficients, we identify an interpretation of the values taken
by their respective periodic constant terms.

The Apéry set of a numerical semigroup S with respect to an element m ∈ S is

Ap(S;n) = {n ∈ S : n−m /∈ S}.
It is known that Ap(S;n) is comprised of the smallest element of each equivalence class
modulo n, that is, Ap(S;n) = {0, a1, . . . , an−1}, where ai is the smallest element of S
with the property ai ≡ i mod n (see [4]).

In what follows, let

g = g1 + · · ·+ gk.

Lemma 2.2. For any n ∈ S and c ∈ Z≥1, if n > cg, then ℓm∞(n) > c.

Proof. Suppose ℓm∞(n) ≤ c. Some factorization z ∈ Z(n) must have zi ≤ c for all i, so

n = z1g1 + · · ·+ zkgk ≤ cg1 + cg2 + · · ·+ cgk = cg.

The claim now follows. �

Lemma 2.3. Fix n ∈ S with n > g21g. If a factorization z ∈ Z(n) has ℓ∞(z) = zi for
i ∈ {2, 3, · · · , k}, then there exists a factorization z′ ∈ Z(n) such that ℓ∞(z′) > ℓ∞(z).
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Proof. We have n > g21g, so by Lemma 2.2, ℓ(z) = zi > g21. Write zi = qg1 + r for
q, r ∈ Z with 0 ≤ r < g1, so in particular q ≥ g1. Trading qg1 copies of gi for qgi copies
of g1, we obtain a factorization z′ ∈ Z(n) with z′1 = z1 + qgi, z

′
i = zi − qg1 = r ≥ 0, and

z′j = zj for all other j. We then readily check

z1 + qgi ≥ qgi ≥ q(g1 + 1) = qg1 + q ≥ qg1 + g1 > qg1 + r = zi,

so z′1 > zi, and therefore ℓ∞(z′) ≥ z′1 > zi = ℓ∞(z). �

Theorem 2.4. Write Ap(S; g1) = {a0, a1, a2, . . .} where each aj ≡ j mod g1. For all
n ∈ S with n > g21g and n ≡ i mod g1, we have

ℓM∞(n) = 1
g1
(n− ai).

In particular, for all n > g21g, we have

ℓM∞(n) = ℓM∞(n− g1) + 1.

Proof. Suppose z ∈ Z(n) has maximal ∞-norm. Since n > g21g, Lemma 2.3 implies

ℓM∞(n) = max{z′1 : z′ ∈ Z(n)}.
and in particular ℓ∞(z) = z1 ≥ z′1 for all z′ ∈ Z(n). This means n− z1g1 ∈ Ap(S; g1).
Comparing equivalence classes modulo g1, this means n− z1g1 = ai, and solving yields

ℓM∞(n) = 1
g1
(n− ai).

The final claim now immediately follows. �

Lemma 2.5. If a ∈ Ap(S; g), then ℓm∞(a) < g.

Proof. Suppose ℓm∞(a) ≥ g. Then there is a factorization z ∈ Z(a) such that zi ≥ g for
some i. This means z′ ∈ Z(a) given by

z′j =

{

zj + gi − g if j = i;

zj + gi otherwise,

is a factorization of a since

(zi + gi − g)gi +
∑

j 6=i

(zj + gi)gj = −gig +

k
∑

i=1

(zj + gi)gj = −gig + a+ gig = a.

Since every coordinate of z′ is positive, a− g ∈ S, and thus a /∈ Ap(S; g). �

Theorem 2.6. Write Ap(S; g) = {0, a1, . . . , ag−1} with each aj ≡ j mod g. Fix n ∈ S,
and fix i ∈ {0, 1, · · · , g − 1} so that i ≡ −n mod g. Then

ℓm∞(n) = 1
g
(n+ ai)

for all n > g2. In particular, for all n > g2, we have

ℓm∞(n) = ℓm∞(n− g) + 1.
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Proof. Fix q ∈ Z so that n = qg − ai. We claim ℓm∞(n) = q.
We then get that ℓm∞(n + ai) = l∞(qg) = q, which is achieved by the factorization

(q, q, . . . , q) ∈ Z(qg). Now, any factorization z′ ∈ Z(ai) has zj < g for each j by
Lemma 2.5, and since n > g2, we must have g < q, so

(q, q, . . . , q)− z′ ∈ Z(qg − ai) = Z(n),

and in particular ℓm∞(n) ≤ q.
Next, suppose by way of contradiction that ℓm∞(n) < q. Then there is a factorization

z ∈ Z(n) with zj < q for every j. However, this implies

(q, q, . . . , q)− z ∈ Z(qg − n) = Z(ai)

which is impossible since this factorization has no nonzero entries and ai ∈ Ap(S; g).
As such, we conclude

ℓm∞(n) = q = 1
g
(n+ ai),

from which the final claimed equality immediately follows. �

Lastly, we next turn our attention to 2 ≤ p < ∞, for which the asymptotic form of
ℓMp (n) is again quasipolynomial, while the asymptotic form of ℓmp (n) is more nuanced.

Lemma 2.7. Fix p ∈ Z≥2. For all n ≫ 0, ℓMp (n) is achieved by a factorization of n
with maximal first coordinate.

Proof. Fix a ∈ Ap(S; g1), and consider n ∈ S with n ≡ a mod g1. Writing n = qg1+ a,
it is the case that q is the largest first coordinate occuring in any factorization of n.
Fix any factorization z ∈ Z(n) with z1 = q, and fix z′ ∈ Z(n) with z′1 < q. We seek to
prove that for q ≫ 0, we have ℓp(z) ≥ ℓp(z

′).

A simple calculus exercise verifies that the maximum of xp
2 + · · ·+ xp

k for x ∈ R
k−1
≥0

subject to the constraint x2g2+· · ·+xkgk = n occurs when x = ( 1
g2
n, 0, . . . , 0). As such,

letting c = z′1 − q and noting that (z′2, . . . , z
′
k) is a factorization of n − z′1g1 in the

semgiroup 〈g2, . . . , gk〉, we see

(2.1) ℓp(z
′) ≤ (q − c)p + ( 1

g2
(n− z′1g1))

p = (q − c)p + ( 1
g2
(a + cg1))

p.

Now, for q sufficiently large,

ℓp(z) ≥ qp ≥ (q − 1)p + ( a
g2

+ g1
g2
)p

since p ≥ 2 and ( a
g2

+ g1
g2
)p is constant. As such, to complete the proof, it suffices to

show that the right hand side of (2.1) is maximized over real c ∈ [1, q] when c = 1.
Again using methods from calculus, there is a unique local extremum in [1, q], and it
is a local minimum, so the maximum value must be attained at either c = 1 or c = q.
Indeed, for q sufficiently large, we obtain

(q − 1)p + ( a
g2

+ g1
g2
)p ≥ ( a

g2
+ q g1

g2
)p

as g2 > g1 ensures (q−1)p−( a
g2
+q g1

g2
)p eventually surpasses the constant ( a

g2
+ g1

g2
)p. �
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Theorem 2.8. If p ∈ Z≥2, then ℓMp (n) is eventually quasipolynomial with degree p,
period g1, and constant leading coefficient 1/gp1.

Proof. Let f(n) denote the largest first coordinate of any factorization in Z(n), and

g(n) = ℓMp
(

n− f(n)g1
)

.

Since n − f(n)g1 ∈ Ap(S; g1) by definition, g(n) is periodic with period g1, and f(n)
is eventually quasilinear with period g1 and leading coefficient 1/g1. Since ℓMp (n) is
achieved by a factorization with maximal first coordinate for n ≫ 0 by Lemma 2.7,

ℓMp (n) = f(n)p + g(n)

is quasipolynomial of degree p, period g1, and leading coefficient 1/gp1. �

We now examine ℓm2 (n). In what follows, let

N = g21 + · · ·+ g2k.

Proposition 2.9. Fix n ≥ 0. If z ∈ Z
k minimizes ℓ2(·) among all integer solutions to

(2.2) x1g1 + · · ·+ xkgk = n,

then z+ (g1, . . . , gk) minimizes ℓ2(·) among all integer solutions to

(2.3) x1g1 + · · ·+ xkgk = n+N.

Proof. A solution z ∈ Z
k to (2.2) minimizes ℓ2(·) if and only if

ℓ2(z
′)− ℓ2(z) =

k
∑

i=1

(z′i)
2 −

k
∑

i=1

z2i =
k

∑

i=1

2zidi + d2i ≥ 0

for every other solution z′ ∈ Z
k to (2.2), where d = z′ − z. In particular, this holds if

and only if
k

∑

i=1

2zidi + d2i ≥ 0

for all d ∈ Z
k satiftying d1g1 + · · ·+ dkgk = 0.

Suppose z satisfies this property. For all d satisfying d1g1 + · · ·+ dkgk = 0,

k
∑

i=1

2(zi + gi)di + d2i = 2

k
∑

i=1

gidi +

k
∑

i=1

2zidi + d2i ≥ 0,

which implies that z+ (g1, . . . , gk) minimizes ℓ2(·) among solutions to (2.3). �

Theorem 2.10. The function ℓm2 (n) is a quasipolynomial of degree 2 on n ≫ 0, with
period N and constant leading coefficient 1/N .
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Proof. For n ∈ Z≥0, Proposition 2.9 implies the smallest coordinate of the integer
solution to (2.3) minimizing ℓ2(·) is strictly larger than the smallest coordinate of the
integer solution to (2.3) minimizing ℓ2(·). As such, one may choose n ∈ S large enough
to ensure some z ∈ Z(n) minimizes ℓ2(·) over all integer solutions. We then have

ℓm2 (n+N)− ℓm2 (n) =
k

∑

i=1

2zigi + g2i = 2n+N,

and taking second differences yields

(ℓm2 (n+2N)− ℓm2 (n+N))− (ℓm2 (n+N)− ℓm2 (n)) = (2(n+N) +N)− (2n+N) = 2N,

which is independent of n. The result follows. �

Example 2.11. It turns out ℓmp (n) is not necessarily an eventual quasipolynomial for
3 ≤ p < ∞. For example, if S = 〈2, 3〉, then by a similar computation to the one used
in the proof of Proposition 2.9, m3(n) is achieved by the solution (c1, c2) ∈ Z(n) with

c1 =

⌊

−8± n
√
130

19

⌋

.

This produces a formula for ℓm3 (n) involving the floor of an integer multiple of an
irrational number, which cannot be eventually quasipolynomial.

3. Arithmetical congruence monoids

In this section, we turn our attention to arithmetical congruence monoids. For a
fixed ACM Ma,b, write

Z(x) = {z ∈ Z
k
≥0 : x = uz1

1 · · ·uzk
k for some k ≥ 0 and distinct atoms u1, . . . , uk ∈ Ma,b}

for the set of factorization tuples of x, for each p ∈ Z≥0 ∪ {∞} define

ℓMp (x) = max{ℓp(z) : z ∈ Z(x)} and ℓmp (x) = min{ℓp(z) : z ∈ Z(x)}

for each x ∈ Ma,b.

Given the aperiodic nature of primes in Z, one would expect that the above functions
will not be quasipolynomial like their analogues for numerical semigroups. As such,
our results in this section seek only to determine asymptotic growth rate. For each
p ∈ {0, 1,∞}, the asymptotics of one of the two functions is straightforward to identify.

Theorem 3.1. For each fixed x ∈ Ma,b with x > 1, we have

ℓM1 (xn) ∈ Θ(n), ℓM∞(xn) ∈ Θ(n), and ℓm0 (x
n) ∈ Θ(1).
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Proof. Fix a factorization x = uz1
1 · · ·uzk

k , where u1, . . . , uk ∈ Ma,b are distinct irre-
ducible elements, and let k′ denote the number of primes in the usual factorization of
x ∈ Z. Since

xn = unz1
1 · · ·unzk

k

for each n ≥ 1, we see

n ≤ ℓM∞(xn) ≤ ℓM1 (xn) ≤ k′n and ℓm0 (x
n) ≤ k.

All 3 claims follow from the above bounds. �

If a = 1, the ACM Ma,b is said to be regular ; in this case, it is know that for fixed
x ∈ Ma,b with x > 1, the set of irreducible elements dividing any power xn is finite
(this follows from the fact that Ma,b is Krull with finite class group; we refer the reader
to [5, Section 3] for details). We record the following consequences of this fact.

Theorem 3.2. If a = 1, then for each fixed x ∈ Ma,b with x > 1, we have

ℓm1 (x
n) ∈ Θ(n), ℓm∞(xn) ∈ Θ(n), and ℓM0 (xn) ∈ Θ(1).

In contrast to Theorem 3.1 and the results of Section 2, for singular (i.e., non-regular)
ACMs the asymptotics of ℓm1 (x

n) and ℓm∞(xn), viewed as functions of n, need not grow
linearly in n, and ℓM0 (xn) need not be bounded.

Example 3.3. The singular ACM M6,6 is bifurcus, meaning every reducible element
can be written as a product of just two atoms [1], so

ℓm∞(x) ≤ ℓm1 (x) ≤ 2

for all x ∈ M6,6. This implies ℓm∞(xn) ∈ Θ(1) and ℓm1 (x
n) ∈ Θ(1) as functions of n.

For the remainder of this section, we turn our attention to the singular ACM M4,6

and elements of the form x = 2a5b7c for a, b, c ∈ Z≥0. After recalling a known character-
ization of the relevant atoms of M4,6, we demonstrate that the asymptotic growth rate
of ℓm∞(xn) and ℓm1 (x

n) matches that of regular ACMs, while the asymptotic behavior
of ℓM0 (xn) depends on x even in this restrictive setting.

Lemma 3.4. An integer u = 2a5b7c lies in M4,6 if and only if a ≥ 1 and a+ b is even.
Moreover, u is irreducible if and only if one of the following holds:

(i) a = 2 and b = 0; or
(ii) a = 1 and b is odd.

Proof. This follows from [6] and [5, Example 4.10], which each give a full characteriza-
tion of the atoms of M4,6. �

Theorem 3.5. For fixed x = 2a5b7c ∈ M4,6 with a ≥ 1, we have

ℓm∞(xn) ∈ Θ(n) and ℓm1 (x
n) ∈ Θ(n).
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Proof. In what follows, we say an atom u = 2p5q7r ∈ M4,6 is good if a(q+r) ≤ 3p(b+c),
and evil otherwise. Note that M4,6 has only finitely many good atoms since p ≤ 2 and
b and c are fixed. Fix a factorization

xn = u1 · · ·uku
′
1 · · ·u′

m

of xn into (not necessarily distinct) good atoms u1, . . . , uk and evil atoms u′
1, . . . , u

′
m.

We claim 2k ≥ m. Indeed, write each

ui = 2pi5qi7ri and u′
j = 2p

′

j5q
′

j7r
′

j ,

let P = p1 + · · ·+ pk and P ′ = p′1 + · · ·+ pm, and define Q,Q′, R, and R′ analogously.
By the above factorization for xn,

a(Q′ +R′) ≤ a(Q+R +Q′ +R′) = 1
n
a(b+ c) = (P + P ′)(b+ c),

and since each u′
j is evil and each pi, p

′
j ∈ {1, 2},

3m(b+ c) ≤ 3P ′(b+ c) < a(Q′ +R′) ≤ (P + P ′)(b+ c) ≤ 2(k +m)(b+ c),

from which the inequality m ≤ 2k follows.
Having shown this, letting G denote the number of good atoms in M4,6, the pigeon-

hole principle ensures that any factorization of xn must have at least 1
3G

n copies of
some good atom, so

1
3G

n ≤ ℓm∞(xn) ≤ ℓm1 (x
n) ≤ ℓM1 (xn)

ensures ℓm∞(xn) ∈ Θ(n) and ℓm1 (x
n) ∈ Θ(n) by Theorem 3.1. �

Proposition 3.6. If x = 28 = 22 ·7 or x = 40 = 23 ·5 in M4,6, then ℓM0 (xn) ∈ Θ(n1/2).

Proof. First, consider x = 28. Let Tk =
(

k+1
2

)

denote the k-th triangular number.

We claim if n ∈ [Tk, Tk+1) for k ≥ 2, then ℓM0 (xn) = k + 1. Indeed,

xn = (227)n = (22)n−k−1(227)(2272) · · · (227k)(227n−Tk).

is a factorization by Lemma 3.4, and the first k + 1 atoms are distinct, so we obtain a
lower bound ℓM0 (xn) ≥ k + 1. Similarly, by Lemma 3.4, any atom dividing xn must be
of the form 227i for some i ≥ 0. If a factorization of xn had at least k+2 distinct atoms,
then each such atom must have a distinct number of 7’s in its prime factorization, and
the resulting expression for xn would contain at least

0 + 1 + 2 + · · ·+ k + (k + 1) = Tk+1

copies of 7, which is impossible if n < Tk+1. This ensures ℓ
M
0 (xn) = k + 1.

Next, consider x = 40. We claim if n ∈ [k2, (k + 1)2), then ℓM0 (xn) = k + 1. Indeed,
by Lemma 3.4, any atom dividing xn must either be 4 or of the form 2 · 5i for some
odd i ≥ 1. If a factorization of xn had at least k + 2 distinct atoms, then each such
atom must have a distinct number of 5’s in its prime factorization, and the resulting
expression for xn would contain at least

0 + 1 + 3 + · · ·+ (2k − 1) + (2k + 1) = (k + 1)2
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copies of 5, which is impossible if n < (k+1)2. This ensures ℓM0 (xn) ≤ k+1. To ensure
equality, we verify that if n 6≡ k mod 2, then

xn = (235)n = (22)(n−k−1)/2(2 · 5)(2 · 53)(2 · 55) · · · (2 · 52k−1)(2 · 5n−k2)

is a factorization for xn, while if n ≡ k mod 2, then

xn = (235)n = (22)(n−k−2)/2(2 · 5)2(2 · 53)(2 · 55) · · · (2 · 52k−1)(2 · 5n−k2−1)

is a factorization. Each expression contains at least k+1 atoms, so ℓM0 (xn) = k+1. �

Proposition 3.7. If x = 70 = 2 · 5 · 7 ∈ M4,6, then ℓM0 (xn) ∈ Θ(n2/3).

Proof. Consider expressions of the form

xn = cu1 · · ·uku
′
1 · · ·u′

m,

where u1, . . . , uk, u
′
1, . . . , u

′
m are distinct positive integers with ui = 227pi for each i and

u′
j = 2 · 5qj7rj for each j, and c is any positive integer. Note that any factorization of

xn in M4,6 is an expression of the above form with 0-norm k +m, so any upper bound
on k +m in expressions of the above form is an upper bound for ℓM0 (xn).

Now, by a similar argument to the first half of the proof of Proposition 3.6, by
counting the total number of 7’s in u1 · · ·uk, we see k ∈ O(n1/2). Similarly, there are
a+1 possible values for each u′

j with exactly a total copies of 5 and 7, so if m ≥
(

a+1
2

)

,
then examining the total number of 5’s and 7’s in u′

1 · · ·u′
m, we see

a
∑

i=1

i(i+ 1) ≤ q1 + · · ·+ qm + r1 + · · ·+ rm ≤ 2n

meaning m ∈ O(n2/3). We conclude k +m ∈ O(n2/3), and thus ℓM0 (xn) ∈ O(n2/3).
Conversely, observe that for each even k ≥ 2, we may choose c appropriately so that

xn = (22)c
k
∏

a=1

a
∏

i=1

(2 · 52i+172a−2i−1)

is a factorization of xn, with
(

k+1
2

)

+ 1 distinct atoms, for some n ≤ k3. As such,

we conclude ℓM0 (xn) ∈ Θ(n2/3). �

In view of the above, we pose the following question.

Question 3.8. Given a singular ACM Ma,b and x ∈ Ma,b with x > 1, determine the
asymptotic behavior of ℓM0 (xn), ℓm1 (x

n), and ℓm∞(xn) as functions of n.
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