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Abstract. Iterated mapping has seen a lot of success lately in many
problems such as bit retrieval, diffraction signal reconstruction, and
graph coloring. In this paper, we add another application of iterated
mapping, namely finding solutions to the No-Three-in-a-Line Problem.
Given an n× n grid, we utilize iterated mapping to find 2n points such
that any straight line (of any slope) drawn will not intersect three of the
selected points.

1. Introduction

We begin with the No-Three-in-a-Line Problem. Given an n × n evenly
spaced square grid of points, we want to select a maximum subset from these
n2 points such that any straight line (of any slope) will not intersect more
than two points. By the pigeonhole principle, 2n is the maximum cardinality
of such a subset, and we seek a subset of this size. It is an open question
if for all n, there exists a solution with 2n points. Guy and Kelly (see [11])
utilize a probabilistic argument to show that it is unlikely for this be true.

The No-Three-in-a-Line problem is genaralized and applied in many ge-
ombinatorial problems (see [10]). One example is the No-Three-in-a-Ell
problem which is about determining the maximum number of points that
can be placed in an n × n grid such that no three form a right angle; see
[12] for a more detailed discussion.

We label the positions of our grid as follows:
x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n

...
...

. . .
...

xn,1 xn,2 . . . xn,n


Then, if a given point xi,j is one of the 2n selected points, we have xi,j = 1,
otherwise xi,j = 0.

Traditional approaches to finding solutions to the No-Three-in-a-Line
Problem tend to utilize a backtracking algorithm to search a subset of all
possible solutions until a solution is found or all possible combinations have
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been searched. Information on this approach can be found in [7] and [8].
Our approach differs because we utilize an iterative algorithm to find a point
that lives in the intersection of two sets. What follows is a description of how
the iterative algorithm works along with a brief introduction to quadratic
optimization.

1.1. Iterated Mapping. Now we discuss the iterated mapping algorithm
as defined in [4]. One can think of iterated mapping as a modified Newton’s
method. Newton’s method maps onto a desired curve and then maps back
to the x-axis. We can replace the curve and x-axis with two arbitrary,
intersecting, n-dimensional sets. Instead of utilizing two of Newton’s maps,
we instead utilize linear projection.

Iterated mapping has been applied to many important problems such as
bit retrieval, diffraction signal reconstruction, graph coloring, etc. (see [1],
[2], [3], [5], and [6]) but this is the first time it has been applied to the No-
Three-in-a-Line Problem. Let n be a positive integer and A,B be subsets
of Rn. Iterated mapping is a technique to find a point x ∈ A ∩ B. Let
PA : Rn → A and PB : Rn → B be projections from Rn to A,B respectively.
Then, iterated mapping proceeds by iterating the difference map:

(1) D(x) = x+ β[PA ◦ fB(x)− PB ◦ fA(x)]

where

fA(x) = PA(x)− (PA(x)− x)/β(2)

fB(x) = PB(x) + (PB(x)− x)/β(3)

and β is a tunable parameter. One can think of β like a learning rate.
Altering β influences how much the mapping function can change the original
input. It is important to tune β to improve the performance of the algorithm.
Similar to a learning rate, if we have too high of a β, the input will change
too much each iteration and may be unable to find solution. If β is too small,
it can take too many iterations to converge in a reasonable amount of time.
We begin running the algorithm by randomly initializing x(0). From there,
at each step k, we set x(k) = D(x(k−1)). This process is repeated until the

input has converged. We know that step N has converged if x(N) = D(x(N)).

1.2. Quadratic Programming. A quadratic program is a problem that
optimizes a quadratic objective function subject to linear equalities and
inequalities. Quadratic programming is a technique for solving quadratic
programs (see [9]). We make use of the interior-point convex algorithm for
quadratic programming as defined by [13] and [14]. The objective function
we are optimizing is given by

(4) min~x
1

2
~xTH~x+ ~fT~x such that

{
C~x ≤ ~b,
Ceq~x = ~beq
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where C ∈ Rm′×n′
and Ceq ∈ Rk′×n′

are incidence matrices, ~b ∈ Rm′
and

~beq ∈ Rk′ are output vectors, ~x ∈ Rn′
is the solution to the optimization

problem, and symmetric matrix H ∈ Rn′×n′
and column vector ~f ∈ Rn′

define the objective function. Here n′ defines the size of the solution to the
optimization problem and m′, k′ define the number of constrains of C, Ceq

respectively.

2. Methodology

We try two different implementation strategies for the algorithm. First,
we discuss the commonality of the two approaches. For both implementa-
tions, we view the problem as a system of linear equations. This can be
viewed as an incidence matrix where each row of C encodes a constraint of
the problem. Additionally, we let α denote the number of lines (of any slope)
in an n× n grid that contain at least three grid elements. Let L1, L2, . . . Lα
denote the subsets of {1, 2, . . . , n}2 which are lines (of any slope) containing
at least three points. Then, A is the set of all real vectors ~x, containing
grid elements and other algorithm dependent information satisfying for all
1 ≤ i ≤ α,

∑
p∈Li

xp ≤ 2. Set B is the set given by x1,1+x1,2+· · ·+xn,n = 2n
where each xi,j is 0 or 1.

We first discuss the Pseudo Inverse (PI) Algorithm. In this algorithm,
we encode the sums of each of the lines that contain at least three grid
elements in variables `1, `2, . . . , `α where `k =

∑
p∈Lk

xp. By utilizing each
`k, the matrix problem that must be solved will not utilize inequalities. For

C ∈ Rα×(n2+α), the kth equation will be the difference of the sum of the
grid elements that are intersected by that line and `k and will equal 0. For
example, the first horizontal line equation could be denoted by

x1,1 + x1,2 + · · ·+ x1,n − `1 = 0

Then, we have the first n2 elements of ~x be the grid elements xi,j and the
last α elements are each `k. Hence, we are finding a vector ~x such that
~x ∈ N(C). Now we discuss the projection. In space A, we utilize the Moore
Penrose pseudo inverse of the incidence matrix, denoted C+, to find a real

solution. The projection onto space A is given by PA(~x) = (1−C+C)~x+C+~b

where ~b = C~x. However, since ~b = ~0, we have

(5) PA(~x) = (1− C+C)~x

We will now define PB, which will transform the entries of x and ` to satisfy
the properties of B. To do this, we set the largest 2n grid points to 1 and
all others are set to 0. For the `k’s, we clamp them between 0 and 2 and
then round them to integer values.

Now, we discuss the Quadratic Programming (QP) Algorithm. This al-
gorithm removes the necessity of finding the value of any `k. We use the
constraints of the quadratic program to enforce that

∑
p∈Li

xp ≤ 2 for all

1 ≤ i ≤ α. In this setting, ~x is the vector of indicators of grid points (no
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longer enlarged by `) and ~b is the all-2 vector. The constraints are encoded

into C ∈ Rα×n2
. It is important to note that this C is different from that of

the PI Algorithm. One example equation that demonstrates this approach
for the main diagonal of the grid is given by:

x1,1 + x2,2 + x3,3 + · · ·+ xn,n ≤ 2

This procedure can be optimized since it is known that each horizontal and
vertical line of the grid must satisfy the constraints with equality. The pro-
jection onto A inputs our quadratic program into an interior-point convex
quadratic programming algorithm to find the closest point to the prior iter-
ations ~x that satisfies the constraints. At iteration K ∈ Z>0, we formulate

H = 2I, f = −2
(
x(K−1)

)T
where I ∈ Rn2×n2

is the identity matrix. This

ensures we find the closest feasible point to x(K−1). Space B finds the largest
2n values in ~x and sets those to 1 and all others are set to 0. The advantage
here is that the incidence matrix C is an α by n2 matrix. Since α grows
faster than n2, over time, C is much smaller for this algorithm.

As discussed above, tuning β is important to have an effective algorithm.
Even small perturbations in β can lead to different results. Figures 1 and 2
demonstrate this by showing how many solutions were found from 100 ini-
tializations with β = −1.5,−1.4, . . . ,−0.1, 0.1, 0.2, . . . , 1.5. It is important
to note that before iterating the difference map, ~x is randomly initialized.

Figure 1. Number of solutions found out of 100 for n = 4.
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Figure 2. Number of solutions found out of 100 for n = 9.

3. Results

Between the pseudo-inverse and quadratic programming algorithms, the
latter algorithm was more effective. With it we were able to find solutions
in fewer iterations and for higher values of n. However, each iteration of the
algorithm took more time. The ability to reach higher values of n made the
second algorithm a better choice for further study.

As n increases, finding solutions becomes more difficult. One reason for
this is that as n increases, the number of rows in C grows quickly and the
number of unknown variables to solve increases. However, the bigger issue
is that as n increases, less initial conditions converge. We notice that some-
times non-convergence is due to cycles but as n grows, this is less frequently
the case. We tried many different approaches to rectify this but none reme-
died lack of convergence. First, we included a parameter, η, which is an
integer that enforces a stop after η iterations. This works well but ideally
we want to stop iterating when a cycle is found. Thus, the next strat-
egy involves detecting cycles and, once found, re-initializing ~x to increase
the number of solutions found per second. This solution works very well for
smaller values of n but as n grows, the increased frequency of non-converging
initial conditions and the decreased frequency of cycles made this less useful.
Figure 3 demonstrates the convergence of both algorithms as n grows.

A major benefit of utilizing this algorithm is that finding a solution for
each value of n takes substantially less time. Figure 4 depicts the difference
in time between the iterative approach and our own implementation of a
backtracking algorithm.
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Figure 3. This graph shows that as n increases, the number
of solutions found tends to decrease.

Figure 4. Time differences between the iterative ap-
proaches and a classical approach.

Our data suggests that their may be no solutions for certain values of n,
however, computational power limits our search. Additionally, we can see
based on Flammenkamp’s work, he is able to find solutions for n = 52 but
was unable to find solutions for n = 47 due to computational power and
time constraints. Thus, based on our data and Flammenkamp’s, we believe
that their may be values of n that do not contain a solution with 2n points.
Future work could involve utilizing iterated mapping to find less points that
satisfy the constraints of the No-Three-in-a-Line problem.
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