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Abstract. In this paper we show how the algorithms to explore the tree of numerical
semigroups can be used to calculate the winning-ness of positions in the game of
Sylver Coinage. We introduce a new invariant for numerical semigroups, the minimal
distance, and show how it can be used to prune the tree of numerical semigroups
for an efficient way of calculating the winning-ness of positions in the game of Sylver
Coinage. We end with a few open questions that were spawned as a result of this
research.

1. Introduction

1.1. Tree of Numerical Semigroups. A numerical semigroup is a cofinite sub-
monoid of N under addition. The elements in its complement in N are denoted the
gaps of the semigroup and the genus of the semigroup is the number of its gaps. There
is a finite number of semigroups of each given genus. See [11] for a general reference
on numerical semigroups.

The primitive elements (or minimal generators) of a numerical semigroup are those
elements of the semigroup that can not be obtained as a sum of two smaller semigroup
elements. We use gens(S) to represent the set of primitive elements for a numerical
semigroup S. If we take away a primitive element from a numerical semigroup we
obtain another semigroup with genus increased by one. The elements of the semigroup
that are smaller than some gap are denoted the left elements of the semigroup. The
primitive elements that are larger than the largest gap are called right generators. We
can organize all numerical semigroups in an infinite tree rooted at N and such that
the children of a node are the semigroups obtained taking away one by one its right
generators. This construction was already considered in [10, 13, 12].

The tree of semigroups was first extensively explored in [1], in this case using brute
force to find right generators. In [2] it was noticed that the search of right generators
of a child can be restricted to the right generators of its parent and to one further
element. Indeed, suppose that n1 is the smallest nonzero non-gap (i.e. the multiplicity)
of a numerical semigroup S. If the gaps of S are not all consecutive (i.e. if S is not
ordinary), when we take away one right generator ni of S, the right generators of the
new semigroup S \ ni all belong to the set of right generators of S except the element
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ni+n1, should it be a primitive element of the new semigroup. In the case when ni+n1

is a primitive element, ni is denoted a strong generator of S.

Suppose we perform recursive depth first exploration of the tree by visiting each
child of a semigroup obtained by taking away a right generator. If each parent is
visited before its children and right generators are taken away, from the largest one to
the smallest one, then numerical semigroups are visited by lexicographic order of their
non-gaps. For instance, the semigroups of genus up to three will be visited as follows,
where, for each semigroup we list its first non-gaps (from left to right):

{0, 1, 2, 3, 4 . . . }, {0, 2, 3, 4, 5, . . . }, {0, 2, 4, 5, 6, . . . }, {0, 2, 4, 6, 7, . . . },

{0, 3, 4, 5, 6, . . . }, {0, 3, 4, 6, 7, . . . }, {0, 3, 5, 6, 7, . . . }, {0, 4, 5, 6, 7, . . . }
If, alternatively, right generators are taken away from the smallest one to the largest
one, then numerical semigroups are visited by lexicographic order of their gaps. For
instance, the semigroups of genus up to three will be visited as follows, where, for each
semigroup we list its whole set of gaps:

{}, {1}, {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3}, {1, 3, 5}

Fromentin and Hivert presented in [8, 7] a very efficient algorithm using parallel
computation and depth first search. Faster algorithms using the same idea of par-
allel computation and depth first search but using alternative representations of the
semigroups and the corresponding descending rules are presented in [6, 3].

1.2. Sylver Coinage. Sylver Coinage is a zero-sum terminating game played by two
people and discovered by John H. Conway in the early 1980’s. Each player takes a
turn naming a number greater than 1 that cannot be made as a sum combination of
previously named numbers. For example, if Player 1 starts and says 3 then Player 2
cannot name any multiple of 3. If player 2 follows by naming 5, then we see that any
multiple of 5 can no longer be named, but also numbers like 8 (3 + 5) also cannot
be named. For a complete introduction please reference A Heuristic Approach to the
Game of Sylver Coinage [9]. A position in a game of Sylver Coinage is defined as the
set of remaining legal moves, and is considered finite when there are only finitely many
legal moves remaining. By construction, a finite position of Sylver Coinage is equal
to the gap set of some numerical semigroup. Therefore, understanding properties of
numerical semigroups can help us develop ways of analyzing Sylver Coinage positions.

Though there are some known strategies of play for Sylver Coinage, and some com-
pletely solved positions, there is still much analysis that needs to be done. In this pa-
per, we describe the construction of perfect play during the endgame of Sylver Coinage.
That is, we provide a methodology for identifying all losing positions up to positions
of size n where perfect play can be achieved by playing a move that results in a losing
position for the opponent. This methodology leverages the fact that Sylver Coinage
positions correspond with numerical semigroups.
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2. Minimal Distance

We begin by describing a new numerical semigroup invariate that relates two nu-
merical semigroups.

Definition 2.1. Let S and T be numerical semigroups, such that T ⊂ S. We define
the minimal distance between S and T as MinD(S, T ) = |gens(S) \ gens(T )|.

Let G = gens(S) \ gens(T ). Then we see that G is minimal such that S = ⟨T,G⟩.
Therefore, the minimal distance between two semigroups is the cardinality of the small-
est number of elements that need to be added as generators to T to get S.

Example 2.2. Let S = ⟨2, 3⟩ and T = ⟨5, 6, 7, 8, 9⟩. We see that MinD(S, T ) = 2,
where G in this case is equal to {2, 3}.

Example 2.3. Let S = ⟨4, 5, 6, 7⟩ and T = ⟨4, 6, 9, 11⟩. Then we see thatMinD(S, T ) =
2, where G in this case is equal to {5, 7}.

Theorem 2.4. Let S and T be numerical semigroups such that T ⊂ S, and let G′ =
gens(S) \T . That is, G′ is the set of generators of S that are not elements of T . Then
MinD(S, T ) = |G′|.

Proof. Let G′ be a set of elements such that S = ⟨T,G′⟩. That is, G′ is a set of elements
that when added as generators to T results in S. This must mean that gens(S) ⊂ T∪G′.
The smallest such G′ for which this would hold true would be G′ = gens(S) \ T . If
we let G′ = gens(S) \ T , then we see that gens(S) ⊂ T ∪ G′ so S = ⟨T,G′⟩ and G′ is
minimal by construction. □

Corollary 2.5. Let S,T and T ′ be numerical semigroups such that T ′ ⊂ T ⊂ S with
T ∩ gens(S) ⊂ T ′. Then we see that MinD(S, T ) = MinD(S, T ′).

Proof. Since all the generators of S that were in T are also in T ′, simply apply Theorem
3.4. □

3. Sylver Coinage and the Tree of Numerical Semigroups

First, we describe the concept of an endgame book. In chess, the endgame has a set
of rules. That is, for specific positions (typically with few pieces remaining) there is a
known list of optimal moves. Similarly, in Sylver Coinage, when the position is small
enough it is possible to calculate the optimal moves. This leads way to the creation
of an endgame rule book, which contains all fully solved positions and the best move
to play in the position if it exists. One approach to this endgame is by differentiation
between winning and losing positions. Now we propose an algorithm for generation of
an endgame rule book, specifically an endgame dictionary using the tree of numerical
semigroups.

We know that the tree of numerical semigroups can map out all numerical semigroups
up to a specific genus. The numerical semigroups that make up this tree also describe all
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Sylver Coinage positions up to the same size. That is, each level in the tree represents
all Sylver Coinage positions of size equal to the level. It is important to note that since
these positions are being represented in a tree and not a graph, not all relationships
between two positions are drawn. For instance, from the position {1, 2, 3, 4}, we can
get to the position {1, 2, 4} by playing 3, but there is no line connecting the two on
the tree. Additionally, we can sometimes skip levels, such as playing 2 in the position
{1, 2, 4}. However, generating the tree can be done very quickly programmatically
and we will later show how some relations provided by the tree are useful for Sylver
Coinage.

Using an algorithm that generates the tree of numerical semigroups, we can define
the dynamic Algorithm 1 to identify winning and losing Sylver Coinage positions.

Algorithm 1 Listing of the losing and winning positions up to level ℓmax.

ℓ = 0
Level-ℓ-positions= {{1}}
Losing positions= {{1}}
Winning positions-moves= {}
for ℓ from 0 to ℓmax do

Level-(ℓ+ 1)-positions= {}
for position in Level-ℓ-positions do

for child in the set of children of position do
Append child to Level-(ℓ+ 1)-positions
Check if there exists a playing move that leads child to a position in

Losing positions.
if no then

Append child to Losing positions

else
Append (child,move) to Winning positions-moves

end if
end for

end for
end for

The benefit of this algorithm is that when a new position is generated from an
existing position, that new position will be in a level exactly one higher than an already
filled out level of the tree. Since we know that playing any move in a position of Sylver
Coinage removes at least 1 element from the position we are guaranteed to have already
determined the winning-ness of all positions that could be made by playing a move in
the newly generated position. Leveraging some of the quickness to generate the tree
of numerical semigroups, we are able to quickly and efficiently generate an endgame
dictionary for the game of Sylver Coinage with this algorithm.
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When a bot using an endgame dictionary up to positions of size 20 generated by
the algorithm above was tested against any of the bots from A Heuristic Approach to
the Game of Sylver Coinage, it was able to win 99% of its games. This showed how
valuable an endgame dictionary can be for the game of Sylver Coinage.

4. Increasing the efficiency of the endgame dictionary generation

One immediate concern with generating an endgame dictionary for Sylver Coinage is
the size of the dictionary can get very big very quickly with millions of positions being
recorded. One way to improve this is to ignore all the winning positions and only store
the losing positions. All positions would still be necessary for generating the endgame
dictionary, but only the losing positions get stored in a file used by a player. Then, in
any position a player simply checks if they are in a losing position. If not, they check
if playing any move can take them to a losing position. If yes, then play that move,
otherwise they must be in a position too large to have been analyzed, so no perfect
strategy is known. Storing only the losing positions does increase the computational
time required to figure out the best move in a given position but greatly reduces the
burden of memory from storing all positions.

Using this idea of only storing losing positions, we now introduce a notion of pruning
when constructing the endgame dictionary. First, we start with a corollary regarding
the tree of numerical semigroups.

Corollary 4.1. Let S be a numerical semigroup with child T on the tree of numerical
semigroups, i.e. T = S \ {g} for some g ∈ gens(S). For all r, right generators of T ,
such that r > max(gens(S)) the child of T , T ′ = T \ {r} satisfies MinD(S, T ′) = 1 with
S = ⟨T ′, g⟩. Additionally the minimal distance between S and any of the children T ′′

of T ′ will also be 1, being S = ⟨T ′′, g⟩.

Proof. Let S, T , and T ′ be as defined in the corollary. We see that T ′ ⊂ T ⊂ S, and
since r > max(gens(S)), T ∩ gens(S) ⊂ T ′. Therefore we can apply Corollary 3.5 to
see that MinD(S, T ′) = 1, where S = ⟨T ′, g⟩. For the second statement, we know that
any right generator of T ′ will be greater than g. Hence, any child T ′′ of T ′ will satisfy
T ∩ gens(S) ⊂ T ′′, and thus we can always apply Corollary 3.5. □

Suppose the numerical semigroup S represents a losing position and suppose that
g is a right generator of S. Then the child T = S \ {g} is a winning position with
winning move g. By using Corollary 5.1, we see that for any child, T ′, of T generated
from a right generator of T greater than the maximum generator of S, T ′ is a winning
position and all the descendants of T ′ will be winning positions, all with winning move
g. Therefore, we don’t need to include them in the tree. This leads way to the new
dynamic Algorithm 2 for generating the endgame dictionary.

Using Algorithm 2, we are able to identify the set of all losing positions in Sylver
Coinage up to a specific size while storing and processing a much smaller number of



6 BRAS-AMORÓS, MOSKOWITZ, AND PONOMARENKO

Algorithm 2 Listing of the losing and winning positions up to level ℓmax with pruning.

ℓ = 0
Level-ℓ-positions= {{1}}
Losing positions= {{1}}
Winning positions-moves= {}
for ℓ from 0 to ℓmax do

Level-(ℓ+ 1)-positions= {}
for position in Level-ℓ-positions do

if there exists a playing move that leads position to a position losing pos

in Losing positions then
Let m = max(gens(losing pos))

end if
Let R = set of right generators of position
for s in R do

if position is winning and s > m then
Prune

else
child=position∪{s}
Append child to Level-(ℓ+ 1)-positions
Check if there exists a playing move that leads child to a position in

Losing positions.
if no then

Append child to Losing positions

else
Append (child,move) to Winning positions-moves

end if
end if

end for
end for

end for

positions, as reflected in Figure 1. We see that we are required to record a lot fewer
positions when applying the pruning method. This means that less memory is taken
up when generating the endgame dictionary and fewer positions need to be analyzed
as the tree is being generated.

5. Depth First Building of Endgame Dictionary

The methodology described above uses a breadth first tree building algorithm to
generate the endgame dictionary for Sylver Coinage. In this section we describe an
approach to the problem using a depth first search and the benefits that it holds.
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Figure 1. This showcases the benefit of pruning positions when record-
ing the Sylver Coinage endgame by comparing the total number of posi-
tions recorded with no pruning to those recorded when pruning is used.

Our initial assumption when constructing the code for generating an endgame dic-
tionary for Sylver Coinage was that the only way to be certain that for a new position
X we can figure out its ”winning-ness” was that all positions of a size smaller than
X were accounted for. This was to ensure that for any move y in X, playing y would
take us to a position that we have seen before. The breadth first approach ensured
a new position will be in a level exactly one higher than an already filled out level of
the tree. But we can observe that new positions obtained after a legal move, not only
have smaller size, but are also previous to the original position, X, in the lexicographic
order of non-gaps.

That means that, instead of exploring the tree by increasing genus, as is known to
be very slow after the Fromentin-Hivert contribution [8], we can explore the tree with
a depth first search in increasing lexicographic order of the non-gaps, as described in
the introduction. The depth first has been shown to provide a substantial efficiency
increase to the construction of the tree of numerical semigroups. Since the computation
of the ”winning-ness” of a position stays the same regardless of whether the tree is
constructed depth or breadth first, using the depth first approach greatly increases the
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efficiency of constructing the endgame dictionary. Additionally, pruning works in both
methodologies so we describe in Algorithm 3 the most efficient version of the algorithm,
which is recursive.

Algorithm 3 combines the efficiency of the depth first search and pruning algorithm
to allow for construction of the endgame dictionary for Sylver Coinage. Additionally,
note that this version of the algorithm only records the losing positions into a list,
rather than a dictionary. This is to keep memory costs low. However, if the full
dictionary was desired then instead of only recording losing positions, the algorithm
can record both winning positions and their corresponding winning move as well as
losing positions.

6. Discussion

The development of these new and efficient algorithms for analyzing Sylver Coinage
positions allows for the construction of an endgame dictionary. This means that using
these algorithms, we can find perfect playing strategies for positions up to size n, where
n is determined by the size of the largest positions in the dictionary. This dictionary
also only ever needs to be generated once and can be built upon by continuing with the
same algorithms that generated the original dictionary. The benefit of the dictionary
is that it allows for the analysis of winning and losing positions. This leads to some
new and interesting questions about the game of Sylver Coinage:

(1) Is the number of positions recorded by the pruning algorithm up to size n as a
percentage of the total number of positions up to size n convergent?

(2) Is there a unique property that is shared by all losing positions up to size n?
Is there a way to generate all losing positions up to size n?

(3) Can a machine learning algorithm be trained on the endgame dictionary to play
perfectly in positions outside of the endgame dictionary?

(4) Can a machine learning algorithm be trained on the endgame dictionary to
identify all losing positions outside of the endgame dictionary?

(5) The pruning algorithm leverages properties of the usual tree of numerical semi-
groups (obtained taking away right generators) to prune some of all possible
prune-able positions. Can a different tree of numerical semigroups be generated
that allows for better pruning?

(6) Is there a more efficient algorithm that can be created for generating the tree
of numerical semigroups?
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10 BRAS-AMORÓS, MOSKOWITZ, AND PONOMARENKO

[3] M. Bras-Amorós. On the seeds and the great-grandchildren of a numerical semigroup. Under
revision.
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[5] M. Bras-Amorós and J. Fernández-González. Computation of numerical semigroups by means of

seeds. Math. Comp., 87(313):2539–2550, 2018.
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