Membership and Elasticity in Certain Affine Monoids

Jackson Autry* Vadim Ponomarenko ${ }^{\dagger}$

July 20, 2018

Abstract

For affine monoids of dimension 2 with embedding dimension 2 and 3 , we study the problem of determining when a vector is an element of the monoid, and the problem of determining the elasticity of a monoid element.

1 Introduction

Let \mathbb{N} denote the set of positive integers, \mathbb{N}_{0} denote the set of nonnegative integers, and \mathbb{Q}^{\star} denote the set of nonnegative rational numbers adjoined with $+\infty$. An affine monoid, S, is a finitely generated submonoid of \mathbb{N}_{0}^{r}, with operation + , for some positive integer r. They are of substantial interest (see, e.g., $[4,8,11])$. In the remainder, we restrict to the case $r=2$. Any affine monoid is cancellative $(\mathbf{a}+\mathbf{b}=\mathbf{a}+\mathbf{c}$ implies $\mathbf{b}=\mathbf{c}$), reduced (its only unit is 0 , the identity element), and torsion free ($k \mathbf{a}=k \mathbf{b}$ for $k \in \mathbb{N}$ implies $\mathbf{a}=\mathbf{b}$). Let S be an affine monoid minimally generated by $\mathcal{A}:=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}\right\} \subset \mathbb{N}_{0}^{r}$, that is to say $S=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{p}\right\rangle:=\mathbb{N}_{0} \mathbf{a}_{1}+\cdots+\mathbb{N}_{0} \mathbf{a}_{p}$ and no proper subset of \mathcal{A} generates S. We say the embedding dimension of S is p. For a general introduction to monoids and their invariants, see [5].

The monoid map

$$
\pi_{\mathcal{A}}: \mathbb{N}_{0}^{p} \longrightarrow S ; \mathbf{u}=\left(u_{1}, \ldots, u_{p}\right) \longmapsto \sum_{i=1}^{p} u_{i} \mathbf{a}_{i}
$$

is sometimes known as the factorization homomorphism associated to \mathcal{A}, and if $\pi_{\mathcal{A}}(\mathbf{u})=s, \mathbf{u}$ is called a factorization of s. For every $s \in S$, the set $\mathbf{Z}(s):=$ $\pi_{\mathcal{A}}^{-1}(s)$ is called the set of factorizations of s. Given $s \in S$, for $\mathbf{u}=\left(u_{1}, \ldots, u_{p}\right) \in$ $\mathbf{Z}(s)$, define the length of the factorization \mathbf{u}, to be $|\mathbf{u}|=u_{1}+\cdots+u_{p}$, and define the set of lengths of s as $\mathrm{L}(s)=\{|\mathbf{u}|: \mathbf{u} \in \mathbf{Z}(\mathbf{a})\}$. Define the elasticity of $s \in S$

[^0]as $\rho(s)=\frac{\max (\mathrm{L}(s))}{\min (\mathrm{L}(s))}$, and the elasticity of S to be $\rho(S)=\sup \{\rho(s): s \in S \backslash\{0\}\}$. The elasticity is a very important monoid invariant (see, e.g., $[2,3,6,7]$).

The monoid elasticity $\rho(S)$ for affine monoids is known (see, e.g., [9]). In this note, our main tool will be the function $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Q}^{\star}$ given by $\phi:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto \frac{a}{b}$, with $\frac{a}{0}$ conventionally taken to be $+\infty$. Our main focus will be $S \subseteq \mathbb{N}_{0}^{2}$, with embedding dimension 2 and 3 .

We will compute the elasticity of individual monoid elements. We also provide membership tests for arbitrary elements of \mathbb{N}_{0}^{2}. We will show that for a given $s \in \mathbb{N}_{0}^{2}$, membership in S and $\rho(s)$ are largely determined by $\phi(s)$.

2 Preliminaries

We begin with the observation that \mathbb{Q}^{\star} is ordered, and the semigroup operation (commonly known as the mediant) preserves this order. This property is wellknown; its proof is included for completeness.
Lemma 1. Let $a, b, c, d \in \mathbb{N}_{0}$ with $\phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}c \\ d\end{array}\right]\right)$. Then

$$
\phi\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)<\phi\left(\left[\begin{array}{l}
a+c \\
b+d
\end{array}\right]\right)<\phi\left(\left[\begin{array}{c}
c \\
d
\end{array}\right]\right) .
$$

Proof: We prove only the nontrivial case $b d \neq 0$. Then $a d<b c$ by hypothesis. If we add $a b$ to both sides and divide by $b(b+d)$, we conclude $\frac{a}{b}<\frac{a+c}{b+d}$ which gives the first inequality. If we instead add $c d$ to both sides and divide by $d(b+d)$, we get the second inequality.

QED

Corollary 2. Let $u, v \in \mathbb{N}_{0}^{2}$ with $\phi(u)<\phi(v)$. Let $s \in\langle u, v\rangle$. Then $\phi(u) \leq$ $\phi(s) \leq \phi(v)$.

Proof: Strict inequality is lost if $s=u+u$ or similar.
QED

Let $G L(2)$ denote the set of 2×2 unimodular matrices (i.e. with determinant ± 1), with entries from \mathbb{Z}. Let $\left[\begin{array}{ll}u & v\end{array}\right]$ denote the 2×2 matrix whose first column is u, and whose second column is v. Let $[\mathcal{A}]$ denote a similar matrix whose columns are the monoid generators.

Corollary 3. Let $u, v \in \mathbb{N}_{0}^{2}$ with $\phi(u)<\phi(v)$. Let $s \in\langle u, v\rangle$. Let $A \in G L(2)$. Suppose that $A u, A v \in \mathbb{N}_{0}^{2}$. Then $A s \in\langle A u, A v\rangle$, and either $\phi(A u) \leq \phi(A s) \leq$ $\phi(A v)$ or $\phi(A v) \leq \phi(A s) \leq \phi(A u)$.

Proof: Since $s \in\langle u, v\rangle$, there is some vector w with $[u v][w]=[s]$. Then $A[u v][w]=A[s]$, hence $[A u A v][w]=[A s]$. Hence $A s \in\langle A u, A v\rangle$. We apply Corollary 2 in one of two ways, depending on whether $\phi(A u) \leq \phi(A v)$ or $\phi(A u) \geq \phi(A v)$.

QED
Given some $u=\left[\begin{array}{c}a \\ b\end{array}\right] \in \mathbb{N}_{0}^{2}$, we say that it is ϕ-minimal if $\operatorname{gcd}(a, b)=1$; otherwise we could take a smaller $u^{\prime}=\left[\begin{array}{c}a / \operatorname{gcd}(a, b) \\ b / \operatorname{gcd}(a, b)\end{array}\right]$ with $\phi(u)=\phi\left(u^{\prime}\right)$. Henceforth we assume that all of our monoid generators are ϕ-minimal.

Lemma 4. Let $u=\left[\begin{array}{l}a \\ b\end{array}\right], v=\left[\begin{array}{l}c \\ d\end{array}\right] \in \mathbb{N}_{0}^{2}$. Suppose that both are ϕ-minimal and $\phi(u)=\phi(v)$. Then $u=v$.

Proof: If $b d=0$, then $b=d=0$ and $a=c=1$; hence, $u=v$. Otherwise $a d=b c$. Since $\operatorname{gcd}(a, b)=1, a \mid c$. Since $\operatorname{gcd}(c, d)=1, c \mid a$. Since $a, c \in \mathbb{N}_{0}$, $a=c$. Similarly, $b=d$.

Since all monoid generators are distinct, by Lemma 4, they must also have distinct ϕ-values. Henceforth, we may assume, without loss of generality, that our monoid generators are given in strictly increasing ϕ order.

We now recall Hermite Normal Form, an analog of row echelon form for matrices over non-fields like \mathbb{Z}. For every rectangular matrix M with integer entries, there is an associated square unimodular matrix U such that $U M$ is (a) upper triangular; and (b) the pivot in each nonzero row is strictly to the right of the previous row; and (c) all entries of M are nonnegative integers. For an introduction to these and other properties of HNF, see [1].

Now, for $M=\left[\begin{array}{ll}u & v\end{array}\right]$, applying HNF we have the first column of $U M$ as $\left[\begin{array}{l}g \\ 0\end{array}\right]$, where g is the gcd of the entries of u. Since u is ϕ-minimal, $g=1$. Hence, we have $U M=\left[\begin{array}{ll}1 & b \\ 0 & b\end{array}\right]$, with $a, b \in \mathbb{N}_{0}$. We now consider a row-swapped HNF, defined as $U^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] U$, so $U^{\prime} M=\left[\begin{array}{cc}0 & a \\ 1 & b\end{array}\right]$. Note that $U^{\prime} u, U^{\prime} v \in \mathbb{N}_{0}^{2}$, so by Corollary 3 , if $s \in\langle u, v\rangle$ then $\phi\left(U^{\prime} u\right) \leq \phi\left(U^{\prime} s\right) \leq \phi\left(U^{\prime} v\right)$. Further, note that $0=\phi\left(U^{\prime} u\right)$ and $\phi\left(U^{\prime} v\right)>0$. Henceforth we will assume without loss of generality that our first generator is $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

We now recall Smith Normal Form, a non-field analog of the linear algebra theorem giving invertible U, V with $U M V=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$, a block matrix. For any rectangular matrix M with integer entries, there are associated square unimodular matrices U, V such that $U M V=\left[\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right]$, where $D=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots, d_{1} d_{2} \cdots d_{k}\right)$. Of particular interest to us are the d_{i}, the so-called determinantal divisors of M, which satisfy that d_{i} is the gcd of all the $i \times i$ minors of M. For example, $d_{1}(M)$ is the gcd of all the entries of M.

The determinantal divisors of M are not disturbed upon multiplication (on either side) by any unimodular matrix. Further, they are not disturbed by appending a column that is a \mathbb{Z}-linear combination of the other columns. For an introduction to these and other properties of SNF, see [10] or [1].

Given a single generator u, because we have assumed it is ϕ-minimal, the determinantal divisor $d_{1}([u])=1$. Consequently, for any invertible U^{\prime}, we must have $d_{1}\left(\left[U^{\prime} u\right]\right)=1$. In particular, applying our row-swapped HNF preserves ϕ-minimality.

We provide our first membership test for our affine monoid, of arbitrary embedding dimension.

Lemma 5. Let $S=\langle\mathcal{A}\rangle$, and let $v \in \mathbb{N}_{0}^{2}$. Set $M=[\mathcal{A}]$ and $M^{\prime}=[\mathcal{A} v]$. If $d_{2}(M) \neq d_{2}\left(M^{\prime}\right)$, then $v \notin S$.

Proof: If $v \in S$, then removing the last column of M^{\prime} (which gives M) will not change the determinantal divisors.

QED

3 Embedding Dimension 2

In this section, we fix the case of $S=\langle u, v\rangle$, with $u=\left[\begin{array}{l}0 \\ 1\end{array}\right], v=\left[\begin{array}{l}a \\ b\end{array}\right]$, and $\operatorname{gcd}(a, b)=1$. Note that $d_{2}\left(\left[\begin{array}{ll}u & v\end{array}\right]\right)=a$. Consider some $s=\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{N}_{0}^{2}$. We have proved that if $s \in S$, then $0 \leq \phi(s) \leq \frac{a}{b}$, and that $d_{2}([u v s])=d_{2}([u v])=a$. It turns out that these two necessary conditions for membership are sufficient.

Theorem 6. With notation as above, $s \in S$ if and only if both of the following hold:

1. $0 \leq \frac{x}{y} \leq \frac{a}{b}$; and
2. $a \mid x$.

Further, if $s \in S$, then $\rho(s)=1$.
Proof: Suppose first that $s \in\langle u, v\rangle$. By Corollary 2, $\phi(u) \leq \phi(s) \leq \phi(v)$. Note that $d_{2}\left(\left[\begin{array}{ll}0 & a \\ 1 & b\end{array}\right]\right)=a$, as the 2×2 minor is $-a$. Note also that one of the 2×2 minors of $[\mathcal{A} s$] has determinant $-x$, so we must have $a \mid x$.

Suppose now that the two conditions hold, i.e. there is some $k \in \mathbb{N}_{0}$ with $x=k a$. If $k=0$, then $s=y\left[\begin{array}{l}0 \\ 1\end{array}\right]$. No other factorization is possible, as even one copy of v will disturb the 0 .

Otherwise, since $\frac{x}{y} \leq \frac{k a}{k b}=\frac{x}{k b}$, we must have $y \geq k b$. Hence we may write $\left[\begin{array}{l}x \\ y\end{array}\right]=k\left[\begin{array}{l}a \\ b\end{array}\right]+(y-k b)\left[\begin{array}{l}0 \\ 1\end{array}\right]$, which proves $s \in\langle u, v\rangle$. No other factorization is possible, by a back-substitution-type argument: u does not affect the first coordinate, so we must have k copies of v and hence $y-k b$ copies of u. QED

This provides an alternate proof of the well-known fact that in embedding dimension $2, \rho(S)=1$.

4 Embedding Dimension 3

We turn now to the case of embedding dimension 3. Henceforth, we fix the case of $S=\langle u, v, w\rangle$, with $u=\left[\begin{array}{l}0 \\ 1\end{array}\right], v=\left[\begin{array}{l}a \\ b\end{array}\right], w=\left[\begin{array}{l}c \\ d\end{array}\right], \phi(u)<\phi(v)<\phi(w)$, and $\operatorname{gcd}(a, b)=1=\operatorname{gcd}(c, d)$. Set $M=\left[\begin{array}{lll}0 & a & c \\ 1 & b & d\end{array}\right]$. We will also fix $s=\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{N}_{0}^{2}$.

We first offer a simple way to compute the determinantal divisor d_{2} below.
Lemma 7. With notation as above, $d_{2}(M)=\operatorname{gcd}(a, c)$.
Proof: Since gcd (a, c) divides each entry of the first row of each 2×2 submatrix, it divides each minor. Hence $\operatorname{gcd}(a, c) \mid d_{2}(M)$. Considering the submatrices $\left[\begin{array}{ll}0 & a \\ 1 & b\end{array}\right]$ and $\left[\begin{array}{ll}0 & c \\ 1 & d\end{array}\right]$, we find that $d_{2}(M)$ divides each of a, c. Hence $d_{2}(M) \mid \operatorname{gcd}(a, c)$. QED

Similarly to the embedding dimension 2 case, if $s \in S$, we must have $0 \leq \phi(s) \leq \frac{c}{d}$, and $d_{2}([M s])=d_{2}([M])=\operatorname{gcd}(a, c)$. Further, we must have $x \in\langle a, c\rangle$, since only v, w have nonzero first coordinates to contribute to x. Unfortunately, in general these necessary conditions are not sufficient, as the following example demonstrates.

Example 8. Consider $u=\left[\begin{array}{l}0 \\ 1\end{array}\right], v=\left[\begin{array}{c}11 \\ 10\end{array}\right], w=\left[\begin{array}{c}10 \\ 3\end{array}\right], s=\left[\begin{array}{c}199 \\ 119\end{array}\right]$. Note that $\phi(s)<2<\phi(w)$, and that $d_{2}([M s])=d_{2}([M])=1.199$ can be factored (uniquely) in $\langle 11,10\rangle$ as $199=9 \cdot 11+10 \cdot 10$. However, $9 v+10 w=\left[\begin{array}{c}199 \\ 120\end{array}\right]$. Including u 's will not help, so $s \notin S$.

If $x \in\langle a, c\rangle$, then we can impose a restriction on its representation, as follows.
Proposition 9. Let $a, c \in \mathbb{N}$ with $\operatorname{gcd}(a, c)=1$. If $x \in\langle a, c\rangle$, then there are $\alpha, \beta \in \mathbb{N}_{0}$ with $x=\alpha a+\beta c$ and $0 \leq \alpha<c$.

Proof: Since $x \in\langle a, c\rangle$, there are some $\alpha^{\prime}, \beta^{\prime} \in \mathbb{N}_{0}$ with $x=\alpha^{\prime} a+\beta^{\prime} b$. But also $x=\left(\alpha^{\prime}-t c\right) a+\left(\beta^{\prime}+t a\right) c$ for all integer t. Choose $t \geq 0$ maximal with $\alpha^{\prime}-t c \geq 0$, set $\alpha=\alpha^{\prime}-t c, \beta=\beta^{\prime}+t a$, and observe that $0 \leq \alpha<c$. QED

We will frequently use the canonical factorization of x in $\langle a, c\rangle$ from Proposition 9 , which we call $\alpha(x), \beta(x)$.

Despite the setback of Example 8, with an additional restriction, we can solve the membership problem. Henceforth, we add the following standing hypothesis.

$$
b c-a d=1
$$

Note that (\star) implies that $1=\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=\operatorname{gcd}(b, d)=\operatorname{gcd}(c, d)=1$. Hence, condition (\star) alone implies ϕ-minimality on v, w, and also $d_{2}(M)=1$.

Theorem 10. With notation as above, $s \in S$ if and only if both

1. $0 \leq \frac{x}{y} \leq \frac{c}{d}$; and
2. $x \in\langle a, c\rangle$.

Proof: If $s \in S$, both conditions are easily seen to hold.
Suppose now that the two conditions hold. Take α, β as in Proposition 9. We now prove that $y \geq \alpha b+\beta d$. Supposing otherwise, we have $y \leq \alpha b+\beta d-1$. Since $\alpha<c,-\alpha>-c$, and hence $(a d-b c) \alpha>-c$. Adding $\beta c d$ to both sides, with a bit of algebra we get $\alpha a d+\beta c d>\alpha b c+\beta c d-c$, or $\frac{\alpha a+\beta c}{\alpha b+\beta d-1}>\frac{c}{d}$. But then $\frac{x}{y}>\frac{c}{d}$, which contradicts hypothesis. Hence $y \geq \alpha b+\beta d$. Then we write $s=(y-\alpha b-\beta d)\left[\begin{array}{l}0 \\ 1\end{array}\right]+\alpha\left[\begin{array}{l}a \\ b\end{array}\right]+\beta\left[\begin{array}{l}c \\ d\end{array}\right]$, and hence $s \in S . \quad$ QED

We turn now to the elasticity problem. The different factorizations of s in S all come from different factorizations of x in $\langle a, c\rangle$, by the following.

Lemma 11. With notation as above, given $\alpha^{\prime}, \beta^{\prime} \in \mathbb{N}_{0}$ with $x=\alpha^{\prime} a+\beta^{\prime} c$, there is exactly one $\delta=\delta\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathbb{Z}$ with $s=\delta u+\alpha^{\prime} v+\beta^{\prime} w$.

Proof: If $s=\delta u+\alpha^{\prime} v+\beta^{\prime} w$, then $y=\delta+\alpha^{\prime} b+\beta^{\prime} d$. We solve for δ uniquely. If $\delta \geq 0$, then $s=\delta u+\alpha^{\prime} v+\beta^{\prime} w$ is a factorization of s in S. QED

Henceforth, we define function $\delta(\alpha, \beta)$, applying Lemma 11 to the factorization from Proposition 9.

We call a factorization of s extreme if it is either of minimal or maximal length. The extreme factorizations are given in the following theorem; there are two cases based on whether $\frac{x}{y}$ is in $\left(0, \frac{a}{b}\right]$ or $\left[\frac{a}{b}, \frac{c}{d}\right)$. Recall that $\lfloor z\rfloor$ denotes the greatest integer that is less than or equal to z.
Theorem 12. With notation as above, the extreme factorizations of s are

$$
s=(\delta-t) u+(\alpha+c t) v+(\beta-a t) w
$$

for $t=0$ and for

$$
t= \begin{cases}\left\lfloor\frac{\beta}{a}\right\rfloor & \frac{x}{y} \leq \frac{a}{b} \\ \delta & \frac{x}{y} \geq \frac{a}{b}\end{cases}
$$

These extreme factorizations have lengths $\delta+\alpha+\beta$ and

$$
\begin{cases}\delta+\alpha+\beta+\left\lfloor\frac{\beta}{a}\right\rfloor(c-a-1) & \frac{x}{y} \leq \frac{a}{b} \\ \delta+\alpha+\beta+\delta(c-a-1) & \frac{x}{y} \geq \frac{a}{b}\end{cases}
$$

respectively.
Proof: Note that, since $\operatorname{gcd}(a, c)=1$, all factorizations of x in $\langle a, c\rangle$ are given by $x=(\alpha+c t) a+(\beta-a t) c$, for various integer t. Note that $\alpha+c t \geq 0$ precisely when $t \geq 0$, by our choice of α.

By Lemma 11, for each choice of t there is a unique $\delta_{t}=\delta(\alpha+c t, \beta-a t)$ with $s=\delta_{t} u+(\alpha+c t) v+(\beta-a t) w$. Hence $y=\delta_{t}+(\alpha+c t) b+(\beta-a t) d=$ $\delta_{t}+\alpha b+\beta d+t$, so $\delta_{t}=y-\alpha b-\beta d-t$. The factorization length (of s in S) is $(\alpha+c t)+(\beta-a t)+(y-\alpha b-\beta d-t)=(\alpha+\beta+y-\alpha b-\beta d)+t(c-a-1)$. In particular, the length varies linearly with t; one extreme is when $t=0$, and the other is when t is maximal.

There are two upper bounds on t, both of which must hold. One is that $\beta-a t \geq 0$ (else the coefficient of w would not be in \mathbb{N}_{0}), while the other is that $0 \leq \delta_{t}=y-\alpha b-\beta d-t=\delta-t$. Now we compare the two bounds of $\frac{\beta}{a}$ and δ. We have $\frac{\beta}{a} \leq \delta$ exactly when $\alpha a b+\beta c b \leq \alpha a b+\beta a d+\delta a$, which holds exactly when $x b \leq y a$ or $\frac{x}{y} \leq \frac{a}{b}$. In this case, we use the $\frac{\beta}{\alpha}$ bound and get the other for free; in the other case it is the reverse.

Substituting $t=0$ and $t=\left\lfloor\frac{\beta}{a}\right\rfloor($ or $t=\delta)$, we find the lengths as above. QED
Note that the sign of $c-a-1$ determines which of the two extreme factorizations is minimal and which is maximal. In particular, we have the following.
Corollary 13. With notation as above, if $c=a+1$, then $\rho(S)=1$.
Proof: By Theorem 12, each $s \in S$ has $|\mathrm{L}(\mathbf{s})|=1$.
QED

Corollary 14. With notation as above, we fix $a, b, c, d, x, \alpha, \beta$ and suppose that $\beta(x)<a$. Then, for every $y \geq \frac{b x}{a}, \rho\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=1$.

Proof: Our hypotheses force $\frac{x}{y} \leq \frac{a}{b}$ and $\left\lfloor\frac{\beta}{a}\right\rfloor=0$. Although δ will vary based on y, all factorizations of $\left[\begin{array}{l}x \\ y\end{array}\right]$ have the same length.

QED

5 Multiples of $s \in S$

We now fix $s \in S$, and consider factorizations of $k s=\left[\begin{array}{c}k x \\ k y\end{array}\right] \in S$ for various $k \in \mathbb{N}$. For any individual k, we can of course compute $\rho(k s)$ using Theorem 12 , but we seek $\rho(k s)$, or estimates thereto, for all the various choices of k. We offer three such results, two specific and one general. For convenience, we recall the sign function given by

$$
\operatorname{sign}(z)= \begin{cases}1 & z>0 \\ 0 & z=0 \\ -1 & z<0\end{cases}
$$

Our special results determine $\rho(k s)$ exactly, independently of k, but are for periodic values of k only. There are two, based on whether or not $\frac{x}{y} \leq \frac{a}{b}$.
Theorem 15. With notation as above, set $\tau=\operatorname{sign}(c-a-1)$. Suppose thet $a c \mid k$ and $\frac{x}{y} \leq \frac{a}{b}$. Then

$$
\rho(k s)=\left(\frac{c}{a} \frac{y a-x(b-1)}{y c-x(d-1)}\right)^{\tau}
$$

Proof: Let $k^{\prime} \in \mathbb{N}$ with $k=k^{\prime} a c$. We have $\alpha(k x)=0$ and $\beta=\beta(k x)=$ $k^{\prime} a x$. We calculate $\delta=\delta(0, \beta)=k y-\beta d=a k^{\prime}(c y-d x)$. One of the extreme factorization lengths will be $\delta+\beta=a k^{\prime}(c y-d x)+a k^{\prime} x=a k^{\prime}(c y-(d-1) x)$. The other will be $\delta+\beta+\left\lfloor\frac{\beta}{a}\right\rfloor(c-a-1)=a k^{\prime}(c y-(d-1) x)+k^{\prime} x(c-a-1)$. QED

We now give our second special result, for the case of k a multiple of c and $\frac{x}{y} \geq \frac{a}{b}$. Note that again the elasticity is independent of k.
Theorem 16. With notation as above, set $\tau=\operatorname{sign}(c-a-1)$. Suppose thet $c \mid k$ and $\frac{x}{y} \geq \frac{a}{b}$. Then

$$
\rho(k s)=\left(c \frac{y(c-a)-x(d-b)}{y c-x(d-1)}\right)^{\tau} .
$$

Proof: Let $k^{\prime} \in \mathbb{N}$ with $k=k^{\prime} c$. We have $\alpha(k x)=0$ and $\beta=\beta(k x)=k^{\prime} x$. We calculate $\delta=\delta(0, \beta)=k y-\beta d=k^{\prime}(c y-d x)$. One of the extreme factorization lengths will be $\delta+\beta=k^{\prime}(c y-d x)+k^{\prime} x=k^{\prime}(c y-(d-1) x)$. The other will be $\delta+\beta+\delta(c-a-1)=k^{\prime}(c y-(d-1) x)+k^{\prime}(c y-d x)(c-a-1)$. QED

The following is a general result for all k. In particular, it implies that $\rho(k s)$ is largely predicted by $\phi(s)$, with this prediction becoming more accurate as $k \rightarrow \infty$. Note also that the limiting values agree, as expected, with the values in Theorems 15, 16.

Theorem 17. With notation as above, set $\tau=\operatorname{sign}(c-a-1)$. Then

$$
\lim _{k \rightarrow \infty} \rho(k s)= \begin{cases}\left(\frac{c}{a} \frac{y a-x(b-1)}{y c-x(d-1)}\right)^{\tau} & \frac{x}{y} \leq \frac{a}{b} \\ \left(c \frac{y(c-a)-x(d-b)}{y c-x(d-1)}\right)^{\tau} & \frac{x}{y} \geq \frac{a}{b}\end{cases}
$$

Proof: We set $\alpha=\alpha(k x), \beta=\beta(k x)$, with $k x=\alpha a+\beta c$, and $0 \leq \alpha<c$. Note that $\beta=\frac{k x-\alpha a}{c}$. We calculate $\delta=k y-\alpha b-\beta d=k y-\alpha b-(k x-\alpha a) \frac{d}{c}=$ $k\left(y-x \frac{d}{c}\right)-\alpha\left(b-\frac{a d}{c}\right)=k\left(y-x \frac{d}{c}\right)-\frac{\alpha}{c}$.

Rather than taking $\rho(k s)$ as the ratio of $\max \mathrm{L}(k s)$ to $\min \mathrm{L}(k s)$, we will instead take ρ as the ratio of $\frac{1}{k} \max \mathrm{~L}(k s)$ to $\frac{1}{k} \min \mathrm{~L}(k s)$. One of these will be $\frac{1}{k}(\delta+\alpha+\beta)=\frac{1}{k}\left(k\left(y-x \frac{d}{c}\right)-\frac{\alpha}{c}+\alpha+\frac{k x-\alpha a}{c}\right)=y-x \frac{d-1}{c}+\frac{\alpha}{k} \frac{c-a-1}{c}$. In the limit, the last term vanishes, leaving $y-x \frac{d-1}{c}$.

We consider the case of $\frac{x}{y} \leq \frac{a}{b}$. The other term we will have in our ratio limit will be $\frac{1}{k}\left(\delta+\alpha+\beta+\left\lfloor\frac{\beta}{a}\right\rfloor(c-a-1)\right)=y-x \frac{d-1}{c}+\frac{\alpha}{k} \frac{c-a-1}{c}+\frac{1}{k}\left\lfloor\frac{\beta}{a}\right\rfloor(c-a-1)$ Now, $\frac{\beta}{a}=k \frac{x}{a c}-\frac{\alpha}{c}$. In the limit we will get $y-x \frac{d-1}{c}+\frac{x}{a c}(c-a-1)$. We simplify to $y-x \frac{b-1}{a}$. This gives the first formula.

Finally, we turn to the case of $\frac{x}{y} \geq \frac{a}{b}$. The other term we will have in our ratio limit will be $\frac{1}{k}(\delta+\alpha+\beta+\delta(c-a-1))=y-x \frac{d-1}{c}+\frac{\alpha}{k} \frac{c-a-1}{c}+$ $\frac{c-a-1}{k}\left(k\left(y-x \frac{d}{c}\right)-\frac{\alpha}{c}\right)$. In the limit we will get $y-x \frac{d-1}{c}+(c-a-1)\left(y-x \frac{d}{c}\right)=$ $(c-a) y-(d-b) x$. This gives the second formula.

We close by noting that the functions appearing in Theorems 15, 16, and 17 are quite simple, being linear fractional transformations in the variable $\frac{x}{y}=\phi(s)$.

References

[1] W. A. Adkins and S. H. Weintraub. Algebra, volume 136 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1992. An approach via module theory.
[2] T. Barron, C. O'Neill, and R. Pelayo. On the set of elasticities in numerical monoids. Semigroup Forum, 94(1):37-50, 2017.
[3] L. Crawford, V. Ponomarenko, J. Steinberg, and M. Williams. Accepted elasticity in local arithmetic congruence monoids. Results Math., 66(1-2):227-245, 2014.
[4] J. I. García-García, M. A. Moreno-Frías, and A. Vigneron-Tenorio. Proportionally modular affine semigroups. J. Algebra Appl., 17(1):1850017, 17, 2018.
[5] P. A. García-Sánchez. An overview of the computational aspects of nonunique factorization invariants. Springer Proceedings in Mathematics 83 Statistics 8 Multiplicative Ideal Theory and Factorization Theory, pages 159-181, 2016.
[6] M. Jenssen, D. Montealegre, and V. Ponomarenko. Irreducible factorization lengths and the elasticity problem within \mathbb{N}. Amer. Math. Monthly, 120(4):322-328, 2013.
[7] C. Kiers, C. O'Neill, and V. Ponomarenko. Numerical semigroups on compound sequences. Comm. Algebra, 44(9):3842-3852, 2016.
[8] A. Mahdavi and F. Rahmati. On the Frobenius vector of some simplicial affine semigroups. Bull. Belg. Math. Soc. Simon Stevin, 23(4):573-582, 2016.
[9] A. Philipp. A characterization of arithmetical invariants by the monoid of relations. Semigroup Forum, 81(3), 2010.
[10] J. C. Rosales and P. A. García-Sánchez. Finitely generated commutative monoids. Nova Science Publishers, Inc., Commack, NY, 1999.
[11] P. A. G. Sánchez, I. Ojeda, and J. C. Rosales. Affine semigroups having a unique betti element. Journal of Algebra and Its Applications, 12(03):1250177, 2013.

[^0]: *San Diego State University
 ${ }^{\dagger}$ San Diego State University, corresponding author

