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Abstract

For affine monoids of dimension 2 with embedding dimension 2 and
3, we study the problem of determining when a vector is an element of
the monoid, and the problem of determining the elasticity of a monoid
element.

1 Introduction

Let N denote the set of positive integers, N0 denote the set of nonnegative in-
tegers, and Q? denote the set of nonnegative rational numbers adjoined with
+∞. An affine monoid, S, is a finitely generated submonoid of Nr0, with oper-
ation +, for some positive integer r. They are of substantial interest (see, e.g.,
[4, 8, 11]). In the remainder, we restrict to the case r = 2. Any affine monoid
is cancellative (a + b = a + c implies b = c), reduced (its only unit is 0, the
identity element), and torsion free (ka = kb for k ∈ N implies a = b). Let S be
an affine monoid minimally generated by A := {a1, . . . ,ap} ⊂ Nr0, that is to say
S = 〈a1,a2, . . . ,ap〉 := N0a1 + · · ·+ N0ap and no proper subset of A generates
S. We say the embedding dimension of S is p. For a general introduction to
monoids and their invariants, see [5].

The monoid map

πA : Np0 −→ S;u = (u1, . . . , up) 7−→
p∑
i=1

uiai

is sometimes known as the factorization homomorphism associated to A, and
if πA(u) = s, u is called a factorization of s. For every s ∈ S, the set Z(s) :=
π−1A (s) is called the set of factorizations of s. Given s ∈ S, for u = (u1, . . . , up) ∈
Z(s), define the length of the factorization u, to be |u| = u1+· · ·+up, and define
the set of lengths of s as L(s) = {|u| : u ∈ Z(a)}. Define the elasticity of s ∈ S
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as ρ(s) = max(L(s))
min(L(s)) , and the elasticity of S to be ρ(S) = sup{ρ(s) : s ∈ S \ {0}}.

The elasticity is a very important monoid invariant (see, e.g., [2, 3, 6, 7]).
The monoid elasticity ρ(S) for affine monoids is known (see, e.g., [9]). In

this note, our main tool will be the function φ : Z2 → Q? given by φ : [ ab ] 7→ a
b ,

with a
0 conventionally taken to be +∞. Our main focus will be S ⊆ N2

0, with
embedding dimension 2 and 3.

We will compute the elasticity of individual monoid elements. We also pro-
vide membership tests for arbitrary elements of N2

0. We will show that for a
given s ∈ N2

0, membership in S and ρ(s) are largely determined by φ(s).

2 Preliminaries

We begin with the observation that Q? is ordered, and the semigroup operation
(commonly known as the mediant) preserves this order. This property is well-
known; its proof is included for completeness.

Lemma 1. Let a, b, c, d ∈ N0 with φ([ ab ]) < φ([ cd ]). Then

φ([ ab ]) < φ(
[
a+c
b+d

]
) < φ([ cd ]).

Proof: We prove only the nontrivial case bd 6= 0. Then ad < bc by hypoth-
esis. If we add ab to both sides and divide by b(b + d), we conclude a

b <
a+c
b+d

which gives the first inequality. If we instead add cd to both sides and divide
by d(b+ d), we get the second inequality. QED

Corollary 2. Let u, v ∈ N2
0 with φ(u) < φ(v). Let s ∈ 〈u, v〉. Then φ(u) ≤

φ(s) ≤ φ(v).

Proof: Strict inequality is lost if s = u+ u or similar. QED

Let GL(2) denote the set of 2×2 unimodular matrices (i.e. with determinant
±1), with entries from Z. Let [ u v ] denote the 2× 2 matrix whose first column
is u, and whose second column is v. Let [A ] denote a similar matrix whose
columns are the monoid generators.

Corollary 3. Let u, v ∈ N2
0 with φ(u) < φ(v). Let s ∈ 〈u, v〉. Let A ∈ GL(2).

Suppose that Au,Av ∈ N2
0. Then As ∈ 〈Au,Av〉, and either φ(Au) ≤ φ(As) ≤

φ(Av) or φ(Av) ≤ φ(As) ≤ φ(Au).

Proof: Since s ∈ 〈u, v〉, there is some vector w with [ u v ] [w ] = [ s ]. Then
A [ u v ] [w ] = A [ s ], hence [Au Av ] [w ] = [As ]. Hence As ∈ 〈Au,Av〉. We ap-
ply Corollary 2 in one of two ways, depending on whether φ(Au) ≤ φ(Av) or
φ(Au) ≥ φ(Av). QED

Given some u = [ ab ] ∈ N2
0, we say that it is φ-minimal if gcd(a, b) = 1; oth-

erwise we could take a smaller u′ =
[
a/ gcd(a,b)
b/ gcd(a,b)

]
with φ(u) = φ(u′). Henceforth

we assume that all of our monoid generators are φ-minimal.
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Lemma 4. Let u = [ ab ] , v = [ cd ] ∈ N2
0. Suppose that both are φ-minimal and

φ(u) = φ(v). Then u = v.

Proof: If bd = 0, then b = d = 0 and a = c = 1; hence, u = v. Otherwise
ad = bc. Since gcd(a, b) = 1, a|c. Since gcd(c, d) = 1, c|a. Since a, c ∈ N0,
a = c. Similarly, b = d. QED

Since all monoid generators are distinct, by Lemma 4, they must also have
distinct φ-values. Henceforth, we may assume, without loss of generality, that
our monoid generators are given in strictly increasing φ order.

We now recall Hermite Normal Form, an analog of row echelon form for
matrices over non-fields like Z. For every rectangular matrix M with integer
entries, there is an associated square unimodular matrix U such that UM is (a)
upper triangular; and (b) the pivot in each nonzero row is strictly to the right
of the previous row; and (c) all entries of M are nonnegative integers. For an
introduction to these and other properties of HNF, see [1].

Now, for M = [ u v ], applying HNF we have the first column of UM as [ g0 ],
where g is the gcd of the entries of u. Since u is φ-minimal, g = 1. Hence, we
have UM = [ 1 b0 a ], with a, b ∈ N0. We now consider a row-swapped HNF, defined
as U ′ = [ 0 1

1 0 ]U , so U ′M = [ 0 a1 b ]. Note that U ′u, U ′v ∈ N2
0, so by Corollary 3, if

s ∈ 〈u, v〉 then φ(U ′u) ≤ φ(U ′s) ≤ φ(U ′v). Further, note that 0 = φ(U ′u) and
φ(U ′v) > 0. Henceforth we will assume without loss of generality that our first
generator is [ 01 ].

We now recall Smith Normal Form, a non-field analog of the linear algebra
theorem giving invertible U, V with UMV = [ I 0

0 0 ], a block matrix. For any rect-
angular matrix M with integer entries, there are associated square unimodular
matrices U, V such that UMV = [D 0

0 0 ], whereD = diag(d1, d1d2, . . . , d1d2 · · · dk).
Of particular interest to us are the di, the so-called determinantal divisors of
M , which satisfy that di is the gcd of all the i × i minors of M . For example,
d1(M) is the gcd of all the entries of M .

The determinantal divisors of M are not disturbed upon multiplication (on
either side) by any unimodular matrix. Further, they are not disturbed by
appending a column that is a Z-linear combination of the other columns. For
an introduction to these and other properties of SNF, see [10] or [1].

Given a single generator u, because we have assumed it is φ-minimal, the
determinantal divisor d1([ u ]) = 1. Consequently, for any invertible U ′, we must
have d1([ U ′u ]) = 1. In particular, applying our row-swapped HNF preserves
φ-minimality.

We provide our first membership test for our affine monoid, of arbitrary
embedding dimension.

Lemma 5. Let S = 〈A〉, and let v ∈ N2
0. Set M = [A ] and M ′ = [A v ]. If

d2(M) 6= d2(M ′), then v /∈ S.

Proof: If v ∈ S, then removing the last column of M ′ (which gives M) will
not change the determinantal divisors. QED
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3 Embedding Dimension 2

In this section, we fix the case of S = 〈u, v〉, with u = [ 01 ] , v = [ ab ], and
gcd(a, b) = 1. Note that d2([ u v ]) = a. Consider some s = [ xy ] ∈ N2

0. We have
proved that if s ∈ S, then 0 ≤ φ(s) ≤ a

b , and that d2([ u v s ]) = d2([ u v ]) = a.
It turns out that these two necessary conditions for membership are sufficient.

Theorem 6. With notation as above, s ∈ S if and only if both of the following
hold:

1. 0 ≤ x
y ≤

a
b ; and

2. a|x.

Further, if s ∈ S, then ρ(s) = 1.

Proof: Suppose first that s ∈ 〈u, v〉. By Corollary 2, φ(u) ≤ φ(s) ≤ φ(v).
Note that d2([ 0 a1 b ]) = a, as the 2 × 2 minor is −a. Note also that one of the
2× 2 minors of [A s ] has determinant −x, so we must have a|x.

Suppose now that the two conditions hold, i.e. there is some k ∈ N0 with
x = ka. If k = 0, then s = y [ 01 ]. No other factorization is possible, as even one
copy of v will disturb the 0.

Otherwise, since x
y ≤

ka
kb = x

kb , we must have y ≥ kb. Hence we may write

[ xy ] = k [ ab ] + (y − kb) [ 01 ], which proves s ∈ 〈u, v〉. No other factorization is
possible, by a back-substitution-type argument: u does not affect the first co-
ordinate, so we must have k copies of v and hence y − kb copies of u. QED

This provides an alternate proof of the well-known fact that in embedding
dimension 2, ρ(S) = 1.

4 Embedding Dimension 3

We turn now to the case of embedding dimension 3. Henceforth, we fix the case
of S = 〈u, v, w〉, with u = [ 01 ] , v = [ ab ] , w = [ cd ], φ(u) < φ(v) < φ(w), and
gcd(a, b) = 1 = gcd(c, d). Set M = [ 0 a c1 b d ]. We will also fix s = [ xy ] ∈ N2

0.
We first offer a simple way to compute the determinantal divisor d2 below.

Lemma 7. With notation as above, d2(M) = gcd(a, c).

Proof: Since gcd(a, c) divides each entry of the first row of each 2×2 subma-
trix, it divides each minor. Hence gcd(a, c)|d2(M). Considering the submatrices
[ 0 a1 b ] and [ 0 c1 d ], we find that d2(M) divides each of a, c. Hence d2(M)| gcd(a, c).
QED

Similarly to the embedding dimension 2 case, if s ∈ S, we must have
0 ≤ φ(s) ≤ c

d , and d2([M s ]) = d2([M ]) = gcd(a, c). Further, we must have
x ∈ 〈a, c〉, since only v, w have nonzero first coordinates to contribute to x.
Unfortunately, in general these necessary conditions are not sufficient, as the
following example demonstrates.
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Example 8. Consider u = [ 01 ] , v = [ 1110 ] , w = [ 103 ] , s = [ 199119 ]. Note that
φ(s) < 2 < φ(w), and that d2([M s ]) = d2([M ]) = 1. 199 can be factored
(uniquely) in 〈11, 10〉 as 199 = 9 · 11 + 10 · 10. However, 9v + 10w = [ 199120 ].
Including u’s will not help, so s /∈ S.

If x ∈ 〈a, c〉, then we can impose a restriction on its representation, as follows.

Proposition 9. Let a, c ∈ N with gcd(a, c) = 1. If x ∈ 〈a, c〉, then there are
α, β ∈ N0 with x = αa+ βc and 0 ≤ α < c.

Proof: Since x ∈ 〈a, c〉, there are some α′, β′ ∈ N0 with x = α′a+β′b. But
also x = (α′ − tc)a + (β′ + ta)c for all integer t. Choose t ≥ 0 maximal with
α′ − tc ≥ 0, set α = α′ − tc, β = β′ + ta, and observe that 0 ≤ α < c. QED

We will frequently use the canonical factorization of x in 〈a, c〉 from Propo-
sition 9, which we call α(x), β(x).

Despite the setback of Example 8, with an additional restriction, we can solve
the membership problem. Henceforth, we add the following standing hypothesis.

bc− ad = 1 (?)

Note that (?) implies that 1 = gcd(a, b) = gcd(a, c) = gcd(b, d) = gcd(c, d) = 1.
Hence, condition (?) alone implies φ-minimality on v, w, and also d2(M) = 1.

Theorem 10. With notation as above, s ∈ S if and only if both

1. 0 ≤ x
y ≤

c
d ; and

2. x ∈ 〈a, c〉.

Proof: If s ∈ S, both conditions are easily seen to hold.
Suppose now that the two conditions hold. Take α, β as in Proposition 9.

We now prove that y ≥ αb+βd. Supposing otherwise, we have y ≤ αb+βd−1.
Since α < c, −α > −c, and hence (ad− bc)α > −c. Adding βcd to both sides,
with a bit of algebra we get αad + βcd > αbc + βcd − c, or αa+βc

αb+βd−1 >
c
d . But

then x
y >

c
d , which contradicts hypothesis. Hence y ≥ αb+ βd. Then we write

s = (y − αb− βd) [ 01 ] + α [ ab ] + β [ cd ], and hence s ∈ S. QED

We turn now to the elasticity problem. The different factorizations of s in
S all come from different factorizations of x in 〈a, c〉, by the following.

Lemma 11. With notation as above, given α′, β′ ∈ N0 with x = α′a+β′c, there
is exactly one δ = δ(α′, β′) ∈ Z with s = δu+ α′v + β′w.

Proof: If s = δu + α′v + β′w, then y = δ + α′b + β′d. We solve for δ
uniquely. If δ ≥ 0, then s = δu+ α′v + β′w is a factorization of s in S. QED

Henceforth, we define function δ(α, β), applying Lemma 11 to the factoriza-
tion from Proposition 9.
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We call a factorization of s extreme if it is either of minimal or maximal
length. The extreme factorizations are given in the following theorem; there are
two cases based on whether x

y is in (0, ab ] or [ab ,
c
d ). Recall that bzc denotes the

greatest integer that is less than or equal to z.

Theorem 12. With notation as above, the extreme factorizations of s are

s = (δ − t)u+ (α+ ct)v + (β − at)w

for t = 0 and for

t =

{
bβa c

x
y ≤

a
b

δ x
y ≥

a
b

.

These extreme factorizations have lengths δ + α+ β and{
δ + α+ β + bβa c(c− a− 1) x

y ≤
a
b

δ + α+ β + δ(c− a− 1) x
y ≥

a
b

,

respectively.

Proof: Note that, since gcd(a, c) = 1, all factorizations of x in 〈a, c〉 are
given by x = (α + ct)a + (β − at)c, for various integer t. Note that α + ct ≥ 0
precisely when t ≥ 0, by our choice of α.

By Lemma 11, for each choice of t there is a unique δt = δ(α + ct, β − at)
with s = δtu + (α + ct)v + (β − at)w. Hence y = δt + (α + ct)b + (β − at)d =
δt + αb+ βd+ t, so δt = y− αb− βd− t. The factorization length (of s in S) is
(α+ ct) + (β − at) + (y − αb− βd− t) = (α+ β + y − αb− βd) + t(c− a− 1).
In particular, the length varies linearly with t; one extreme is when t = 0, and
the other is when t is maximal.

There are two upper bounds on t, both of which must hold. One is that
β− at ≥ 0 (else the coefficient of w would not be in N0), while the other is that
0 ≤ δt = y − αb− βd− t = δ − t. Now we compare the two bounds of β

a and δ.

We have β
a ≤ δ exactly when αab+ βcb ≤ αab+ βad+ δa, which holds exactly

when xb ≤ ya or x
y ≤

a
b . In this case, we use the β

α bound and get the other for
free; in the other case it is the reverse.

Substituting t = 0 and t = bβa c (or t = δ), we find the lengths as above. QED

Note that the sign of c− a− 1 determines which of the two extreme factor-
izations is minimal and which is maximal. In particular, we have the following.

Corollary 13. With notation as above, if c = a+ 1, then ρ(S) = 1.

Proof: By Theorem 12, each s ∈ S has |L(s)| = 1. QED

Corollary 14. With notation as above, we fix a, b, c, d, x, α, β and suppose that
β(x) < a. Then, for every y ≥ bx

a , ρ([ xy ]) = 1.

Proof: Our hypotheses force x
y ≤

a
b and bβa c = 0. Although δ will vary

based on y, all factorizations of [ xy ] have the same length. QED
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5 Multiples of s ∈ S

We now fix s ∈ S, and consider factorizations of ks =
[
kx
ky

]
∈ S for various

k ∈ N. For any individual k, we can of course compute ρ(ks) using Theorem
12, but we seek ρ(ks), or estimates thereto, for all the various choices of k. We
offer three such results, two specific and one general. For convenience, we recall
the sign function given by

sign(z) =


1 z > 0

0 z = 0

−1 z < 0

.

Our special results determine ρ(ks) exactly, independently of k, but are for
periodic values of k only. There are two, based on whether or not x

y ≤
a
b .

Theorem 15. With notation as above, set τ = sign(c − a − 1). Suppose thet
ac|k and x

y ≤
a
b . Then

ρ(ks) =

(
c

a

ya− x(b− 1)

yc− x(d− 1)

)τ
.

Proof: Let k′ ∈ N with k = k′ac. We have α(kx) = 0 and β = β(kx) =
k′ax. We calculate δ = δ(0, β) = ky − βd = ak′(cy − dx). One of the extreme
factorization lengths will be δ + β = ak′(cy − dx) + ak′x = ak′(cy − (d− 1)x).
The other will be δ+β+bβa c(c−a−1) = ak′(cy−(d−1)x)+k′x(c−a−1). QED

We now give our second special result, for the case of k a multiple of c and
x
y ≥

a
b . Note that again the elasticity is independent of k.

Theorem 16. With notation as above, set τ = sign(c − a − 1). Suppose thet
c|k and x

y ≥
a
b . Then

ρ(ks) =

(
c
y(c− a)− x(d− b)
yc− x(d− 1)

)τ
.

Proof: Let k′ ∈ N with k = k′c. We have α(kx) = 0 and β = β(kx) = k′x.
We calculate δ = δ(0, β) = ky − βd = k′(cy − dx). One of the extreme fac-
torization lengths will be δ + β = k′(cy − dx) + k′x = k′(cy − (d − 1)x). The
other will be δ+β+δ(c−a−1) = k′(cy−(d−1)x)+k′(cy−dx)(c−a−1). QED

The following is a general result for all k. In particular, it implies that ρ(ks)
is largely predicted by φ(s), with this prediction becoming more accurate as
k → ∞. Note also that the limiting values agree, as expected, with the values
in Theorems 15, 16.

Theorem 17. With notation as above, set τ = sign(c− a− 1). Then

lim
k→∞

ρ(ks) =


(
c
a
ya−x(b−1)
yc−x(d−1)

)τ
x
y ≤

a
b(

cy(c−a)−x(d−b)yc−x(d−1)

)τ
x
y ≥

a
b

.
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Proof: We set α = α(kx), β = β(kx), with kx = αa + βc, and 0 ≤ α < c.
Note that β = kx−αa

c . We calculate δ = ky−αb−βd = ky−αb− (kx−αa)dc =

k(y − xdc )− α(b− ad
c ) = k(y − xdc )− α

c .
Rather than taking ρ(ks) as the ratio of max L(ks) to min L(ks), we will

instead take ρ as the ratio of 1
k max L(ks) to 1

k min L(ks). One of these will be
1
k (δ + α + β) = 1

k

(
k(y − xdc )− α

c + α+ kx−αa
c

)
= y − xd−1c + α

k
c−a−1
c . In the

limit, the last term vanishes, leaving y − xd−1c .
We consider the case of xy ≤

a
b . The other term we will have in our ratio limit

will be 1
k

(
δ + α+ β + bβa c(c− a− 1)

)
= y−xd−1c + α

k
c−a−1
c + 1

k b
β
a c(c−a− 1)

Now, βa = k x
ac−

α
c . In the limit we will get y−xd−1c + x

ac (c−a−1). We simplify

to y − x b−1a . This gives the first formula.
Finally, we turn to the case of x

y ≥
a
b . The other term we will have in

our ratio limit will be 1
k (δ + α+ β + δ(c− a− 1)) = y − xd−1c + α

k
c−a−1
c +

c−a−1
k

(
k(y − xdc )− α

c

)
. In the limit we will get y−xd−1c +(c−a−1)(y−xdc ) =

(c− a)y − (d− b)x. This gives the second formula. QED

We close by noting that the functions appearing in Theorems 15, 16, and 17
are quite simple, being linear fractional transformations in the variable x

y = φ(s).
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