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Factorization of Perplex Integers
Vadim Ponomarenko

Abstract. The perplex numbers are a parallel-universe alternative to the complex numbers, a
different two-dimensional algebra over R. Instead of i =

√
−1, there is h =

√
1. h is a new

square root of 1, equal to neither 1 nor −1. We explore the number theory of the integers
within this parallel universe.

1. INTRODUCTION. In an 1843 letter, William Rowan Hamilton shared his dis-
covery of the quaternion number system, which extends C. Quaternions are expressed
as a + bi + cj + dk, where i2 = j2 = k2 = −1, and i, j,k do not commute. The
quaternions have gone on to great renown, and are used in many contexts such as
three-dimensional mechanics.

Less well known is the work of Hamilton’s contemporary James Cockle. In 1848 he
published (in [5]) his discovery of the tessarine number system (also called bicomplex
by some later authors). These are also expressed as a+ bi+ cj+ dk, where i2 = j2 =
−1, k2 = 1, and i, j,k commute. This was followed in 1849 (in [6]) with the split-
quaternions or coquaternions. These too are expressed as a + bi + cj + dk, where
i2 = −1, j2 = k2 = 1, and i, j,k do not commute.

Tessarine and split-quaternion numbers have not been forgotten, and continue to
be studied (e.g. in [2, 9, 10, 11, 14]). They too have applications, such as in signal
processing. Polynomials over the tessarines admit a fundamental theorem of algebra
(see [13]).

Taking a subalgebra generated by 1 and any one of i, j,k in the quaternions just
gives us the complex numbers. The same holds for tessarines and split-quaternions,
for the generators which square to −1. With the other generators, however, we get
something new. Let us fix a generator h, satisfying h2 = 1, and consider the numbers
a+ bh. These are called perplex numbers1.

Perplex numbers have become more popular lately. They have applications in
physics ([7, 8]), algebra ([12, 13]), geometry ([15]), and dynamical systems ([16]). In
this note, we propose to study the perplex integers, from an algebraic number theory
perspective.

There are two natural definitions for “perplex integers” (neither of which appear
to have been studied before). We will consider both. The first is P1 = {a + bh :
(a, b) ∈ Z2}; these were of interest in [15]. To define the second, we first define the
checkerboard space X = {(a, b) ∈ Z2 : a ≡ b (mod 2)}, and H = 1+h

2
. We men-

tion in passing that H2 =
(
1+h
2

)2
= 2+2h

4
= H. We can now define P2 = {a2 + b

2
h :

(a, b) ∈ X} = {a+ bH : (a, b) ∈ Z2}.
P2 is natural because it is the intersection of the ring Q(h) with the set of quadratic

integers {x : x2 + bx+ c = 0, with b, c ∈ Z}. P1 is an order in the ring of quadratic
integers P2, specifically P1 = {2a+ 2bH : (a, b) ∈ Z2}.

1These have also been called (see [1]) split complex numbers, hyperbolic numbers, hyperbolic complex
numbers, double numbers, real tessarines, algebraic motors, bireal nubmers, approximate numbers, counter-
complex numbers, anormal-complex numbers, Lorentz numbers, paracomplex numbers, semi-complex num-
bers, split binarions, spacetime numbers, Study numbers, and twocomplex numbers. They have been rediscov-
ered frequently!
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It is very common to study rings of quadratic integers in algebraic number theory,
with h replaced by

√
D for some D ∈ Z. Traditionally D is assumed to be squarefree,

and that Q(
√
D) is a subfield of C. These assumptions cause the ring of quadratic

integers to be a domain, i.e. have no zero divisors. One famous example is D = −1,
which gives the Gaussian integers {a+ bi : a, b ∈ Z}.

In our context, however, Q(h) is not a subfield of C (or a field at all), and (1 +
h)(1 − h) = 0 = H(1 −H). Hence, both P1 and P2 have zero divisors. To study
factorizations here we need some special tools in this non-domain context; for a nice
introduction to these tools see [3].

Let x, y be nonzero elements of a commutative ring with zero divisors. We say they
are associates if each divides the other; we say they are strong associates if x = yz for
some unit z; we say they are very strong associates if they are associates yet x 6= yz for
any non-unit z. As the choice of names implies, being very strong associates implies
being strong associates, which in turn implies being associates.

We say that x is irreducible (resp. strongly irreducible, very strongly irreducible)
if x = yz means that either y or z is an associate (resp. strong associate, very strong
associate) of x. Hence the familiar notion of irreducibility has now been split into
a hierarchy of three notions. Being very strongly irreducible implies being strongly
irreducible, which in turn implies being irreducible. We say that x is prime as per usual,
i.e. if x|yz then x|y or x|z. Being prime implies being irreducible, but no further. By
“reducible” we mean possessing none of the three irreducibility properties.

2. SPLIT NORM. Our main tool for studying factorization of perplex integers will
be the split norm function, defined as S(a+ bh) = (a+ b, a− b). Note that whether
a+ bh ∈ P1 (and (a, b) ∈ Z2) or a+ bh ∈ P2 (and (2a, 2b) ∈ X), S(a+ bh) ∈ Z2.
This will allow S to be useful for both contexts. We will consider Z2 as a ring (X
is a subring), with coordinatewise addition and multiplication, i.e. (a, b) + (c, d) =
(a+ c, b+ d) and (a, b)(c, d) = (ac, bd). Basic properties of the split norm S follow.

Proposition 1. Let S : P1 → Z2 (resp. S : P2 → Z2). Then:

1. For all x, y ∈ P1 (resp. x, y ∈ P2), S(x+ y) = S(x) + S(y).
2. For all x, y ∈ P1 (resp. x, y ∈ P2), S(xy) = S(x)S(y).
3. S is injective.
4. Im(S) = X (resp. Im(S) = Z2), where Im(S) denotes the image of S.
5. S : P1 → X (resp. S : P2 → Z2) is a ring homomorphism.

Proof. (1) and (2) can be proved with direct calculation:
S(x + y) = S(a + c + (b + d)h) = (a + c + b + d, a + c − (b + d)) = (a +
b, a− b) + (c+ d, c− d) = S(a+ bh) + S(c+ dh) = S(x) + S(y), and
S(xy) = S((a + bh)(c + dh)) = S(ac + bd + (ad + bc)h) = (ac + bd + ad +
bc, ac+ bd− ad− bc) = (a+ b, a− b)(c+ d, c− d) = S(a+ bh)S(c+ dh) =
S(x)S(y).

Now, let (m,n) ∈ Z2. Then S(a + bh) = (m,n) gives the system of equations
{a+ b = m, a− b = n} with unique solution (in Q) of {a = m+n

2
, b = m−n

2
}. The

uniqueness gives (c). Note that, for any m,n, we have m + n ≡ m − n (mod 2).
Hence, every preimage {m+n

2
+ m−n

2
h} will be in P2. However, not every preimage

will be in P1; for this, we need (m+n
2

, m−n
2

) ∈ Z2. This occurs exactly when m ≡ n
(mod 2), i.e. when (m,n) ∈ X.

Finally, note that S(1 + 0h) = (1, 1). Also, 1 + 0h is the multiplicative identity
in P1 and P2, while (1, 1) is the multiplicative identity in X and Z2.
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We mention in passing the norm function N(a + bh) = a2 − b2, from P1 (resp.
P2) to Z, which is also totally multiplicative like S. This is the usual tool used to
study rings of quadratic integers, but for us it is more useful to exploit the identity
a2 − b2 = (a+ b)(a− b), which motivates the split norm.

3. FACTORIZATION. Applying the ring homomorphism provided by Proposition
1, we can study factorization properties in the simpler rings X and Z2 — these same
properties must hold in P1 and P2. We will now develop these properties in Proposi-
tions 2 and 4. Our main results, Theorems 3 and 5, follow as corollaries.

Let P denote the set of rational primes {2, 3, 5, 7, 11, . . .}, and P? = P \ {2}.
Multiple instances of ± should be considered independent. For example, (±1,±1)
represents four elements of Z2 (also X). For any (a, b) ∈ Z2 (or X), we say that its
friends are {(±a,±b)} ∪ {(±b,±a)}. Its friends are found by multiplying by a unit
and/or reversing coordinates. Note that (a, b) is irreducible (strongly irreducible, very
strongly irreducible, prime, reducible) if and only if its friends are too. We now present
factorization properties of Z2.

Proposition 2. Consider the ring Z2.

1. There are four units: (±1,±1), i.e. (1, 1) and its friends.
2. The zero divisors are {(a, 0) : a ∈ Z \ {0}} ∪ {(0, b) : b ∈ Z \ {0}}.
3. Every associate is a strong associate; every irreducible is a strong irreducible.
4. The very strong irreducibles are {(1, p) : p ∈ P} and their friends.

The other (strong but not very strong) irreducibles are (1, 0) and its friends.
5. The irreducibles are all prime.

Proof. (1) If (a, b) is a unit, then there is some (c, d) with (a, b)(c, d) = (1, 1). Hence
ac = 1 and bd = 1, as integers. So a, c are units in Z, which are +1,−1.
(2) If (a, b) is a zero divisor, then it is nonzero and there is some nonzero (c, d) with
(a, b)(c, d) = (0, 0). Hence ac = 0 and bd = 0, as integers. Since (c, d) is nonzero,
then c 6= 0 (hence a = 0) or d 6= 0 (hence b = 0).
(3) If (a, b)|(c, d) and (c, d)|(a, b), then: a|c, c|a, b|d, d|b as integers. Hence, a = ±c
and b = ±d, so (a, b) = (±1,±1)(c, d).
(4) Now consider (a, b) ∈ Z2 with ab 6= 0. If neither a nor b is ±1, then (a, b) =
(a, 1)(1, b) shows that (a, b) is reducible. If a = ±1 and b is reducible in Z, then
b = ±b1b2 for two non-units b1, b2. Now (a, b) = (a, b1), (1, b2) shows that (a, b) is
reducible. The case (a1a2,±1) is similarly reducible.

Next, consider x = (1, p), for some p ∈ P . If (a, b)|x, then a|1 and b|p. Then
a = ±1, and either b = ±1 (in which case (a, b) is a unit) or b = ±p (in which case
(a, b) is an associate of x). This proves that x is irreducible.

Note that (a, 0) = (a, 1)(1, 0), so if a 6= ±1 then (a, 0) is reducible. If instead
a = 1 and (a, 0) = (b, c)(m,n), then bm = 1 and cn = 0. Hence (b, c) or (m,n) is
(±1, 0), which is an associate of (a, 0). Hence (1, 0) is irreducible.

Lastly, we consider strong vs. very strong. Suppose that (1, p) and (c, d) are as-
sociates, and (1, p) = (c, d)(m,n). Since (1, p) is a strong irreducible, (c, d) =
(±1,±p). But now (m,n) = (±1,±1), a unit. Hence (1, p) is a very strong irre-
ducible. However, (1, 0) and (1, 0) are associates, yet (1, 0) = (1, 0)(1, 3) for the
non-unit (1, 3), so (1, 0) is not a very strong irreducible.
(5) Suppose first that (1, p)(a, b) = (c, d)(m,n) for some p ∈ P . Then pb = dn.
Since p is prime, without loss we assume p|d. Now, (c, d) = (1, p)(c, d

p
). Hence

(1, p) is prime. Next, suppose that (1, 0)(a, b) = (c, d)(m,n). Now dn = 0, so
without loss we assume d = 0. Now, (c, d) = (1, 0)(c, d). Hence (1, 0) is prime.
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Proposition 2 tells us that Z2 is a ring where every irreducible is prime. Every non-
zero divisor has a factorization into irreducibles, unique up to order and associates.
However, zero divisors in Z2 lack this property: (2, 1)(1, 0) = (2, 1)(1, 0)(1, 7).

We mention as an aside yet a fourth definition of irreducibility. We say that x is
m-irreducible if x = yz means that either y is either a unit or associated to x. This
turns out to be intermediate in strength between very strong irreducibles and strong
irreducibles. In Z2, we show the strong irreducible (1, 0) and its three friends are
not m-irreducible by noting (1, 0) = (1, 3)(1, 0), where (1, 3) is neither a unit nor
associated to (1, 0).

We now use S to pull the results of Proposition 2 back to P2. Now, the friends of
a+ bh are {±a± bh} ∪ {±b± ah}.

Theorem 3. Consider the perplex integers P2. Then:

1. There are four units: ±1,±h.
2. The zero divisors are {a

2
+ a

2
h : (a, a) ∈ X \ {(0, 0)}} and their friends.

3. Every associate is a strong associate; every irreducible is a strong irreducible.
4. The very strong irreducibles are: {p+1

2
+ p−1

2
h : p ∈ P} and their friends.

The other (strong but not very strong) irreducibles are: ± 1
2
± 1

2
h.

5. The irreducibles are all prime.

Note that all very strong irreducibles, with the sole exception of those corresponding
to p = 2, are also in P1, since any odd prime p leads to p+1

2
, p−1

2
∈ Z.

It’s interesting to compare P2 with the well-known Gaussian integers Z[i] = {a+
bi : (a, b) ∈ Z2}. These too satisfy the property that every irreducible is prime. Since
Z[i] is a domain, this gives unique factorization. It has a norm N(a+ bi) = a2 + b2.
Its irreducibles are of three types. Those p ∈ P congruent to 1 modulo 4 give rise to
irreducible a+ bi with a2 + b2 = p and each of a, b nonzero. Those p ∈ P congruent
to 3 modulo 4 give rise to irreducible p+ 0i (as well, of course, this multiplied by any
of the units ±1,±i). Lastly, each of ±1 ± i are irreducible. To summarize, in Z[i],
2 = (1 + i)(1− i) is ramified, primes congruent to 3 are inert, and primes congruent
to 1 are decomposed. In contrast, every rational prime is decomposed in P2.

We now turn to P1, which has a simpler definition but more complicated factoriza-
tion properties, as compared with P2. Recall that S gives a ring isomorphism between
P1 and X. By N we mean the positive integers, and by N0 the nonnegative integers.

Proposition 4. Consider the ring X.

1. There are four units: (±1,±1).
2. The zero divisors are {(2a, 0) : a ∈ Z \ {0}} ∪ {(0, 2b) : b ∈ Z \ {0}}.
3. Every associate is a strong associate; every irreducible is a strong irreducible.
4. The very strong irreducibles are of two types, odd and even:

the odd ones are {(1, p) : p ∈ P?} and their friends;
the even ones are {(2, 2n) : n ∈ N} and their friends.

The other (strong but not very strong) irreducibles are (2, 0) and its friends.
5. All irreducibles are prime, except the even very strong ones (which are not).

Proof. Much of the proof of Proposition 2 carries over: all of (1)-(3); also, that every
irreducible (a, b) with ab 6= 0 is very strong; also, that (1, p) with p ∈ P? (and its
friends) is irreducible and prime; also, that (a, b) with a, b odd is reducible unless
(a, b) is (1, p) for some p ∈ P? (or one of its friends).
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Now consider (a, b) with a, b even and nonzero. If ±a is not a power of 2, then
write a = ±2mt (t odd) and (a, b) = (a

t
, b)(t, 1) shows that (a, b) is reducible. The

case of ±b not a power of 2 is similar. If instead a = ±2m, b = ±2n with m,n ≥ 2,
then (a, b) = (2, 2)(a

2
, b
2
) and again (a, b) is reducible.

Now, consider x = (2, 2n). If (a, b)(c, d) = x, then ac = 2 and bd = 2n. Since
(a, b) ∈ X, a ≡ b (mod 2). Hence if a = ±1, then b = ±1 and (a, b) is a unit. If
instead a = ±2, then c = ±1. Since (c, d) ∈ X, we must have c ≡ d (mod 2), so
d = ±1 and then (c, d) is a unit. This proves that x is irreducible.

If (a, 0) ∈ X, then a is even. We then write (a, 0) = (2, 0)(a
2
, b) (where b is chosen

to be 1 or 2 based on parity of a
2

), which shows that (a, 0) is reducible unless a = ±2.
Suppose now that (2, 0)(a, b) = (c, d)(m,n), then cm = 2a and dn = 0. Without

loss, suppose that d = 0. Now, since (c, d) ∈ X, we must have c even. Hence (c, d) =
(2, 0)( c

2
, t) (where t is chosen to be 1 or 2 based on parity of c

2
). This proves that

(2, 0) is prime, and hence also irreducible.
Let x = (2, 2n), and take y = (2, 2n)(2, 23n) = (2, 2n+1)(2, 23n−1). x divides y,

but divides neither (2, 2n+1) nor (2, 23n−1) (because n 6= n + 1 and n 6= 3n − 1).
This proves that neither x, nor its friends, is prime.

Proposition 4 tells us that X (and hence P1) does not have unique factorization,
even among the non-zero-divisors. In fact, it is very far from this. For any n ∈ N with
n ≥ 2, we set x = (2, 2)n = (2n, 2n) = (2n−1, 2)(2, 2n−1). Hence x has a very long
factorization into n irreducibles, and also a factorization into 2 irreducibles. The elas-
ticity of x is therefore the ratio n

2
, and the elasticity of X (and thus P1) is the supremum

of these, i.e. infinite. For a lively introduction to factorization theory, including terms
such as “elasticity”, see [4].

We can again use S to pull the results back to P1. We retain the terms “odd” and
“even” from Proposition 4, although the parity is somewhat obscured.

Theorem 5. Consider the perplex integers P1. Then:

1. There are four units: ±1,±h.
2. The zero divisors are {a+ ah : (a, a) ∈ Z2 \ {(0, 0)}} and their friends.
3. Every associate is a strong associate; every irreducible is a strong irreducible.
4. The very strong irreducibles are of two types, odd and even:

the “odd” ones are {p+1
2

+ p−1
2
h : p ∈ P?} and their friends;

the “even” ones are {2n + 1 + (2n − 1)h : n ∈ N0} and their friends.
The other (strong but not very strong) irreducibles are (2, 0) and its friends.

5. All irreducibles are prime, except the even very strong ones (which are not).

Note that every irreducible (a, b) ∈ P1 satisfies |a|+ |b| ∈ P? ∪ {2n : n ∈ N} and
1 ≤ ||a| − |b|| ≤ 2; these properties can be seen to characterize the irreducibles.

4. FURTHER WORK. These results are only a first step toward understanding
factorization in a perplex world. Recall that the Gaussian integers are the simplest
quadratic integer ring Z[

√
−1]. Traditionally, there are infinitely more of great interest:

Z[
√
D] (for D squarefree and congruent to 1 modulo 4) and X[

√
D
2
] (for D squarefree

and congruent to 3 modulo 4). Similarly, the perplex integers are the simplest example
of a quadratic integer ring with square D. One could ask similar questions about
{a + 2bh : a, b ∈ Z}, corresponding to D = 4. Further, one could look at integer
subrings of R+ Rh, such as the algebraic integers contained in Q(

√
2h).

Also, Gaussian integers are isomorphic to the quotient ring Z[x]/(x2 + 1). Simi-
larly, P1 is isomorphic to the quotient ring Z[x]/(x2 − 1), and P2 to Z[x]/(x2 − x).
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One could similarly study factorization in quotient rings Z[x]/(p(x)) for other re-
ducible polynomials p(x).
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