1. Find a formula involving the connectives \lor, \land, and \neg that has this truth table:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>??</th>
<th>$P \land Q$</th>
<th>$\neg(P \land Q)$</th>
<th>$P \lor Q$</th>
<th>$(\neg(P \land Q)) \land (P \lor Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Answer: $(\neg(P \land Q)) \land (P \lor Q)$. Other answers are possible.

2. What can we put in the blank to make the identity correct?

$(A \triangle B) \cap C = (C \setminus A) \triangle _________$

Answer: $C \setminus B$. The simplest justification is by Venn diagram. $A \triangle B$ is the regions 1, 2, 5, 6; intersecting with C gives the regions 5, 6. $C \setminus A$ is the regions 4, 6, while $C \setminus B$ is the regions 4, 5. Taking the symmetric difference gives the regions 5, 6.

3. Find a formula involving only the connectives \neg and \rightarrow that is equivalent to $P \leftrightarrow Q$.

Answer: $\neg((P \rightarrow Q) \rightarrow \neg(Q \rightarrow P))$. This is equivalent to $\neg((P \rightarrow Q) \lor \neg(Q \rightarrow P))$ by the conditional law, which is equivalent to $\neg(P \rightarrow Q) \land \neg(Q \rightarrow P)$ by the second DeMorgan’s law, which is equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$ by the double negation law (twice), which is equivalent to $P \leftrightarrow Q$ by the definition of biconditional.

4. Determine whether or not the following statements are equivalent: $(\exists x \in A P(x)) \land (\exists x \in B P(x))$ and $\exists x \in (A \cap B) P(x)$.

Answer: no. Here is a counterexample: let $A = \{2, 4\}$, $B = \{3\}$, and let $P(x)$ stand for the sentence “x is prime”. A, B each contains a prime, but $A \cap B$ is empty, so does not contain a prime.

5. Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

\subseteq: Let $x \in \mathcal{P}(A \cap B)$. Then $x \subseteq A \cap B$. For all $y \in x$, $y \in A \cap B$. In particular, $\forall y \in x$, $y \in A$ (thus $x \subseteq A$) and $\forall y \in x$, $y \in B$ (thus $x \subseteq B$). Because $x \subseteq A$, $x \in \mathcal{P}(A)$; because $x \subseteq B$, $x \in \mathcal{P}(B)$. Combining these we get $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

\supseteq: Let $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Then $x \in \mathcal{P}(A)$ and $x \in \mathcal{P}(B)$, so $x \subseteq A$ and $x \subseteq B$. For all $y \in x$, $y \in A$ and $y \in B$, so $y \in A \cap B$. Hence $x \subseteq A \cap B$ and thus $x \in \mathcal{P}(A \cap B)$.

6. Suppose that \(A \setminus B \subseteq C \cap D \) and \(x \in A \). Prove that if \(x \notin D \) then \(x \in B \).

Suppose that \(A \setminus B \subseteq C \cap D \), \(x \in A \), and \(x \notin B \). Combining \(x \in A \) and \(x \notin B \) we get \(x \in A \setminus B \). Because \(A \setminus B \subseteq C \cap D \) we get \(x \in C \cap D \), and in particular \(x \in D \). We have proved that \(x \notin B \) implies \(x \in D \); the contrapositive of this is the desired goal.

7. Suppose that \(x, y \in \mathbb{R} \). Prove that if \(x \neq 0 \), then if \(y = \frac{3x^2 + 2y}{x^2 + 2} \) then \(y = 3 \).

Suppose that \(x \neq 0 \) and \(y = \frac{3x^2 + 2y}{x^2 + 2} \). Multiplying by the nonzero \(x^2 + 2 \) we get \(yx^2 + 2y = 3x^2 + 2y \). Subtracting \(2y \) we get \(yx^2 = 3x^2 \). Dividing by the nonzero \(x^2 \) we get \(y = 3 \), as desired.

8. Prove that if \(A \) and \(B \setminus C \) are disjoint, then \(A \cap B \subseteq C \).

Suppose that \(A \) and \(B \setminus C \) are disjoint. Let \(x \in A \cap B \); hence \(x \in A \) and \(x \in B \). We argue by contradiction. Suppose that \(x \notin C \). Combining with \(x \in B \) we get \(x \in B \setminus C \).

But also \(x \in A \); yet \(A \) and \(B \setminus C \) are disjoint. This contradiction proves that \(x \in C \).

Since \(x \) was arbitrary in \(A \cap B \), we have shown that \(A \cap B \subseteq C \).

9. Prove that for every integer \(n \), \(n^3 \) is even iff \(n \) is even.

Let \(n \) be an integer. We proceed by cases, depending on if \(n \) is even or odd. If \(n \) is even, then for some integer \(m \), \(n = 2m \). Then \(n^3 = (2m)^3 = 8m^3 = 2(4m^3) \), twice an integer, which is even. This proves that if \(n \) is even then \(n^3 \) is even.

If \(n \) is odd, then for some integer \(k \), \(n = 2k + 1 \). Then \(n^3 = (2k + 1)^3 = 8k^3 + 12k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1 \), which is odd. This proves that if \(n \) is not even, then \(n^3 \) is not even.

10. Prove that for any sets \(A \) and \(B \), if \(\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B) \) then either \(A \subseteq B \) or \(B \subseteq A \).

(method 1) Suppose that \(\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B) \). We argue by contradiction. Suppose that \(\neg(A \subseteq B \cup B \subseteq A) \) holds. Hence \(\neg(A \subseteq B) \land \neg(B \subseteq A) \) holds, by DeMorgan’s second law. Hence \(\neg(\forall x \in A \ x \in B) \land \neg(\forall y \in B \ y \in A) \). Hence \((\exists x \in A \ x \notin B) \land (\exists y \in B \ y \notin A) \). Now, consider the set \(\{x, y\} \); let’s name it \(z \).

Since \(x, y \in A \cup B \), we have \(z \subseteq A \cup B \) so \(z \in \mathcal{P}(A \cup B) \). But \(z \notin A \) since \(y \notin A \); hence \(z \notin \mathcal{P}(A) \). Also, \(z \notin B \) since \(x \notin B \); hence \(z \notin \mathcal{P}(B) \). But this contradicts \(z \in \mathcal{P}(A) \cup \mathcal{P}(B) \), which completes the proof.

(method 2) Suppose that \(\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B) \). We argue by cases. Either \(A \subseteq B \) or \(B \subseteq A \). In the first case, we are done. In the second case, \(\neg(A \subseteq B) \) holds, so \(\neg(\forall x \in A \ x \in B) \). This implies that \(\exists x \in A \ x \notin B \). Now, let \(y \in B \). Consider the set \(\{x, y\} \); let’s name it \(z \). Since \(x, y \in A \cup B \), we have \(z \subseteq A \cup B \) so \(z \in \mathcal{P}(A \cup B) \). But \(z \notin B \) since \(x \notin B \); hence \(z \notin \mathcal{P}(B) \). Because \(z \in \mathcal{P}(A) \cup \mathcal{P}(B) \), in fact \(z \in \mathcal{P}(A) \). Hence \(y \in A \). Since \(y \in B \) was arbitrary, we have proved that \(B \subseteq A \).