On The Multi-Dimensional Frobenius Problem

Jeffrey Amos Charles Chen Olga Lepigina Timur Nezhmetdinov Darren Ong Vadim Ponomarenko* Matthew Richer Laura Zirbel

*Department of Mathematics and Statistics San Diego State University

SIAM Conference on Discrete Mathematics June 16, 2008

http://www-rohan.sdsu.edu/~vadim/frobenius2.pdf
Please encourage your students to apply to the San Diego State University Mathematics REU.

http://www.sci.sdsu.edu/math-reu/index.html

This talk presents $\approx 3\%$ of the results from 2005, 2006.
Fix a set A of positive integers.
Frobenius numbers are defined via:

$$g(A) = \sup \left(\mathbb{Z} \setminus \mathbb{N}_0[A] \right) \quad f(A) = \sup \left(\mathbb{Z} \setminus \mathbb{N}[A] \right)$$

Classical results:

$$f(a_1, a_2) = a_1 a_2, \quad g(a_1, a_2) = a_1 a_2 - a_1 - a_2$$

$$g(A) = f(A) - \sum A.$$

Active area of research, hundreds of papers, special session at JM
Starting point

Fix a set A of positive integers.

Frobenius numbers are defined via:

$$g(A) = \sup \left(\mathbb{Z} \setminus \mathbb{N}_0[A] \right) \quad f(A) = \sup \left(\mathbb{Z} \setminus \mathbb{N}[A] \right)$$

Classical results:

$$f(a_1, a_2) = a_1 a_2, \quad g(a_1, a_2) = a_1 a_2 - a_1 - a_2$$

$$g(A) = f(A) - \sum A.$$
Starting point

Fix a set A of positive integers.
Frobenius numbers are defined via:

$$g(A) = \sup \left(\mathbb{Z} \setminus \mathbb{N}_0[A] \right) \quad f(A) = \sup \left(\mathbb{Z} \setminus \mathbb{N}[A] \right)$$

Classical results:
$$f(a_1, a_2) = a_1 a_2, \quad g(a_1, a_2) = a_1 a_2 - a_1 - a_2$$
$$g(A) = f(A) - \sum A.$$

Active area of research, hundreds of papers, special session at JM.
Vector Generalization

Take A to be a set of d-vectors.
First problem: Find “right” definitions.

$$g(A) = \inf\{ x | \text{if } y > x \text{ then } y \in \mathbb{N}_0[A] \}$$
$$f(A) = \inf\{ x | \text{if } y > x \text{ then } y \in \mathbb{N}[A] \}$$

Scalars: New definitions coincide with old, are never in semigroup ($\mathbb{N}_0[A]$ or $\mathbb{N}[A]$), unique.
Vectors: Sometimes in semigroup, need not be unique.

Second problem: Choose a (partial) vector order.
Hidden third problem...
Vector Generalization

Take A to be a set of d-vectors. First problem: Find “right” definitions.

$$g(A) = \inf\{x | \text{if } y > x \text{ then } y \in \mathbb{N}_0[A]\}$$
$$f(A) = \inf\{x | \text{if } y > x \text{ then } y \in \mathbb{N}[A]\}$$

Scalars: New definitions coincide with old, are never in semigroup ($\mathbb{N}_0[A]$ or $\mathbb{N}[A]$), unique.
Vectors: Sometimes in semigroup, need not be unique.

Second problem: Choose a (partial) vector order.
Hidden third problem...
Vector Generalization

Take A to be a set of d-vectors.
First problem: Find “right” definitions.

$$g(A) = \inf \{x | \text{if } y > x \text{ then } y \in \mathbb{N}_0[A]\}$$
$$f(A) = \inf \{x | \text{if } y > x \text{ then } y \in \mathbb{N}[A]\}$$

Scalars: New definitions coincide with old, are never in semigroup ($\mathbb{N}_0[A]$ or $\mathbb{N}[A]$), unique.
Vectors: Sometimes in semigroup, need not be unique.

Second problem: Choose a (partial) vector order.
Hidden third problem...
Vector Generalization

Take A to be a set of d-vectors. First problem: Find “right” definitions.

\[
g(A) = \inf \{ x \mid \text{if } y > x \text{ then } y \in \mathbb{N}_0[A] \} \\
f(A) = \inf \{ x \mid \text{if } y > x \text{ then } y \in \mathbb{N}[A] \}
\]

Scalars: New definitions coincide with old, are never in semigroup ($\mathbb{N}_0[A]$ or $\mathbb{N}[A]$), unique.
Vectors: Sometimes in semigroup, need not be unique.

Second problem: Choose a (partial) vector order.
Hidden third problem...
Vector Generalization

Take A to be a set of d-vectors.
First problem: Find “right” definitions.

\[
g(A) = \inf\{x | \text{if } y > x \text{ then } y \in \mathbb{N}_0[A]\} \\
f(A) = \inf\{x | \text{if } y > x \text{ then } y \in \mathbb{N}[A]\}
\]

Scalars: New definitions coincide with old, are never in semigroup ($\mathbb{N}_0[A]$ or $\mathbb{N}[A]$), unique.
Vectors: Sometimes in semigroup, need not be unique.

Second problem: Choose a (partial) vector order.
Hidden third problem...
Ordering \mathbb{Z}^d

$$A = \{(0, 4), (1, 1), (3, 0)\}$$

These form a cone with the origin. (first quadrant). This cone can be translated, such as to (8,7).

$a \leq b$ if b is in the cone at a.

Unique g-vector at (8,7).
A second example

\[A = \{(0, 4), (1, 1), (3, 0)\} \]

\[A = \{(0, 4), (2, 1), (3, 0)\} \]
More typical cones

\[A = \{(1, 4), (1, 1), (3, 1)\} \]

\[A = \{(1, 4), (2, 2), (3, 1)\} \]
One with $|A| = 4$

\[A = \{(0,5), (1,2), (2,1), (4,0)\} \]

Three g-vectors:
\((7,13), (9,9), (11,5) \)

Missing from semigroup:
\((9,13), (11,9) \), as indicated, and infinitely many points on \(x = 7, y = 5 \)
It gets worse

\[A = \{(1, 6), (2, 2), (1, 3), (5, 1)\} \text{ has 11 lattice } g\text{-vectors.} \]

Problem since we insist \(g\)-vectors have \(\mathbb{Z} \) coordinates.
It gets better

2 rational g-vectors: $\left(\frac{190}{29}, \frac{647}{29}\right)$, $\left(\frac{248}{29}, \frac{415}{29}\right)$

Problem eliminated. 2 rational g-vectors.
Why 29?

\[A = \{(5, 1), (1, 6), (2, 2), (1, 3)\} \]

Bounding vectors: \((5, 1), (1, 6)\)

\[
\left|\begin{array}{cc}
5 & 1 \\
1 & 6 \\
\end{array}\right| = 29
\]

In \(d\) dimensions, a cone is simple if \(d\) vectors determine the cone. For \(d = 1, 2\), all cones are simple. Henceforth, we assume our cone is simple.

We reorder \(A\) so that its first \(d\) vectors determine the cone.

Thm[2005]: Let \(a_1, a_2, \ldots, a_d\) determine the cone. All rational \(d\)-vectors can be written with \(|a_1 a_2 \cdots a_d|\) in the denominator.
Why 29?

\[A = \{(5, 1), (1, 6), (2, 2), (1, 3)\} \]

Bounding vectors: (5,1),(1,6)

\[|5 \ 1| = 29 \\
|1 \ 6| \]

In \(d \) dimensions, a cone is *simple* if \(d \) vectors determine the cone. For \(d = 1, 2 \), all cones are simple. Henceforth, we assume our cone is simple.

We reorder \(A \) so that its first \(d \) vectors determine the cone.

Thm[2005]: Let \(a_1, a_2, \ldots, a_d \) determine the cone. All rational \(d \)-vectors can be written with \(|a_1 a_2 \cdots a_d| \) in the denominator.
Why 29?

\[A = \{ (5, 1), (1, 6), (2, 2), (1, 3) \} \]

Bounding vectors: (5,1),(1,6)

\[\begin{vmatrix} 5 & 1 \\ 1 & 6 \end{vmatrix} = 29 \]

In \(d \) dimensions, a cone is \textit{simple} if \(d \) vectors determine the cone. For \(d = 1, 2 \), all cones are simple. Henceforth, we assume our cone is simple.

We reorder \(A \) so that its first \(d \) vectors determine the cone.

\textbf{Thm[2005]}: Let \(a_1, a_2, \ldots, a_d \) determine the cone. All rational \(d \)-vectors can be written with \(|a_1 a_2 \cdots a_d| \) in the denominator.
Existence of g-vectors

Novikov 92/94, Halter-Koch 93, made progress

Schur’s Thm: f, g exist if and only if $\gcd(A) = 1$

Thm[2005]: Take vectors of A, d at a time, form a square matrix, and take the absolute value of its determinant. Set $\gcd(A)$ to be the gcd of these $|A|_d$ values. Then f, g exist if and only if $\gcd(A) = 1$.

Thm[2005]: $g(A) = f(A) - \sum A$ (easy)
Existence of g-vectors

Novikov 92/94, Halter-Koch 93, made progress

Schur’s Thm: f, g exist if and only if $\gcd(A) = 1$

Thm[2005]: Take vectors of A, d at a time, form a square matrix, and take the absolute value of its determinant. Set $\gcd(A)$ to be the gcd of these $\binom{|A|}{d}$ values. Then f, g exist if and only if $\gcd(A) = 1$.

Thm[2005]: $g(A) = f(A) - \sum A$ (easy)
Existence of g-vectors

Novikov 92/94, Halter-Koch 93, made progress

Schur’s Thm: f, g exist if and only if $\gcd(A) = 1$

Thm[2005]: Take vectors of A, d at a time, form a square matrix, and take the absolute value of its determinant. Set $\gcd(A)$ to be the gcd of these $\left(\frac{|A|}{d}\right)$ values. Then f, g exist if and only if $\gcd(A) = 1$.

Thm[2005]: $g(A) = f(A) - \sum A$ (easy)
Existence of g-vectors

Novikov 92/94, Halter-Koch 93, made progress

Schur’s Thm: f, g exist if and only if $\gcd(A) = 1$

Thm[2005]: Take vectors of A, d at a time, form a square matrix, and take the absolute value of its determinant. Set $\gcd(A)$ to be the gcd of these $\left(\frac{|A|}{d}\right)$ values. Then f, g exist if and only if $\gcd(A) = 1$.

Thm[2005]: $g(A) = f(A) - \sum A$ (easy)
The simplest case

Suppose $|A| = d + 1$.

The scalar case: $f(a_1, a_2) = a_1 a_2$

Thm: $f(a_1, \ldots, a_d, a_{d+1}) = |a_1 a_2 \ldots a_d|a_{d+1}$

In particular, a unique f-vector, with integer coordinates.

[Simpson and Tijdeman 2003, rediscovered in 2005]
The simplest case

Suppose $|A| = d + 1$.

The scalar case: $f(a_1, a_2) = a_1 a_2$

Thm: $f(a_1, \ldots, a_d, a_{d+1}) = |a_1 a_2 \cdots a_d|a_{d+1}$

In particular, a unique f-vector, with integer coordinates.

[Simpson and Tijdeman 2003, rediscovered in 2005]
The simplest case

Suppose $|A| = d + 1$.

The scalar case: $f(a_1, a_2) = a_1 a_2$

Thm: $f(a_1, \ldots, a_d, a_{d+1}) = |a_1 a_2 \ldots a_d| a_{d+1}$

In particular, a unique f-vector, with integer coordinates.

[Simpson and Tijdeman 2003, rediscovered in 2005]
The simplest case

Suppose $|A| = d + 1$.

The scalar case: $f(a_1, a_2) = a_1 a_2$

Thm: $f(a_1, \ldots, a_d, a_{d+1}) = |a_1 a_2 \ldots a_d| a_{d+1}$

In particular, a unique f-vector, with integer coordinates.

[Simpson and Tijdeman 2003, rediscovered in 2005]
Custom g-sets

Thm[2006]: Given $\{a_1, \ldots, a_d\}$, and $m > 0$. Then there is $A \supseteq \{a_1, \ldots, a_d\}$ with $|A| = d + m$ and

$$|g(A)| = \binom{|a_1 \cdots a_d| + m - 2}{m - 1}$$

Thm[2006]: For $m = 2$, $|g(A)| \leq |a_1 \cdots a_d|$.

Thm[2005]: Given an $x \in \mathbb{N}^d$, there is an A with $|A| = d + 1$ and $g(A) = \{x\}$, if and only if at least one coordinate of x is odd.
Custom g-sets

Thm[2006]: Given $\{a_1, \ldots, a_d\}$, and $m > 0$. Then there is $A \supseteq \{a_1, \ldots, a_d\}$ with $|A| = d + m$ and

$$|g(A)| = \left(\frac{|a_1 \cdots a_d| + m - 2}{m - 1}\right)$$

Thm[2006]: For $m = 2$, $|g(A)| \leq |a_1 \cdots a_d|$.

Thm[2005]: Given an $x \in \mathbb{N}^d$, there is an A with $|A| = d + 1$ and $g(A) = \{x\}$, if and only if at least one coordinate of x is odd.
Custom g-sets

Thm[2006]: Given $\{a_1, \ldots, a_d\}$, and $m > 0$. Then there is $A \supseteq \{a_1, \ldots, a_d\}$ with $|A| = d + m$ and

$$|g(A)| = \binom{|a_1 \cdots a_d| + m - 2}{m - 1}$$

Thm[2006]: For $m = 2$, $|g(A)| \leq |a_1 \cdots a_d|$.

Thm[2005]: Given an $x \in \mathbb{N}^d$, there is an A with $|A| = d + 1$ and $g(A) = \{x\}$, if and only if at least one coordinate of x is odd.
An almost-common factor

In the following, assume all f exist.

Thm[Johnson 60]: $f(a_1, na_2, \ldots, na_k) = nf(a_1, \ldots, a_k)$

Thm[2005]: $f(a_1, \ldots, a_d, na_{d+1}, \ldots, na_k) = nf(a_1, \ldots, a_k)$

Note: n scalar, a_i's vectors

Thm[2006]: $f(Na_1, \ldots, \frac{1}{|N|} Na_i, \ldots, Na_k) = Nf(a_1, \ldots, a_k)$

Note: N invertible $d \times d$ matrix, i arbitrary
An almost-common factor

In the following, assume all f exist.

Thm[Johnson 60]: $f(a_1, na_2, \ldots, na_k) = nf(a_1, \ldots, a_k)$

Thm[2005]: $f(a_1, \ldots, a_d, na_{d+1}, \ldots, na_k) = nf(a_1, \ldots, a_k)$

Note: n scalar, a_i’s vectors

Thm[2006]: $f(Na_1, \ldots, \frac{1}{|N|}Na_i, \ldots, Na_k) = Nf(a_1, \ldots, a_k)$

Note: N invertible $d \times d$ matrix, i arbitrary
An almost-common factor

In the following, assume all \(f \) exist.

Thm[Johnson 60]: \(f(a_1, na_2, \ldots, na_k) = nf(a_1, \ldots, a_k) \)

Thm[2005]: \(f(a_1, \ldots, a_d, na_{d+1}, \ldots, na_k) = nf(a_1, \ldots, a_k) \)

Note: \(n \) scalar, \(a_i \)'s vectors

Thm[2006]: \(f(Na_1, \ldots, 1 \left| N \right| Na_i, \ldots, Na_k) = Nf(a_1, \ldots, a_k) \)

Note: \(N \) invertible \(d \times d \) matrix, \(i \) arbitrary
An upper bound

Thm[Schur 35]:
\[f(a_1, \ldots, a_k) \leq (a_1 - 1) \max\{a_2, \ldots, a_k\} + a_2 + \ldots + a_k \]

Thm[2005]:
\[f(a_1, \ldots, a_k) \leq (|a_1 \cdots a_d| - 1) \text{LUB}(a_{d+1}, \ldots, a_k) + a_{d+1} + \ldots + a_k. \]

\leq, least upper bound are in the cone partial order
An upper bound

Thm[Schur 35]:
\[f(a_1, \ldots, a_k) \leq (a_1 - 1) \max\{a_2, \ldots, a_k\} + a_2 + \ldots + a_k \]

Thm[2005]:
\[f(a_1 \ldots, a_k) \leq (|a_1 \cdots a_d| - 1) \text{LUB}(a_{d+1}, \ldots, a_k) + a_{d+1} + \ldots + a_k. \]

\leq, least upper bound are in the cone partial order