The Probability that Two Semigroup Elements Commute Can Be Anything

Vadim Ponomarenko
Natalie Selinski

Department of Mathematics and Statistics
San Diego State University

AMS Joint Mathematics Meetings
San Francisco January 13, 2010

http://www-rohan.sdsu.edu/~vadim/commute.pdf
Shameless advertising

My trip is partially sponsored by the
San Diego State University Mathematics REU.

http://www.sci.sdsu.edu/math-reu/index.html

Please send your (U.S. citizen or permanent resident)
undergraduates.
Introduction

A finite semigroup S has an associative, closed, binary operation. Inverses, identity, commutativity are NOT assumed.

The commuting probability of S is the probability that $x \ast y = y \ast x$ if x, y are chosen uniformly at random. Which probabilities in $(0, 1]$ are possible?

Previously: the set of possible values are dense in $(0, 1]$. Now: the set of possible values are (all rationals in) $(0, 1]$.
A finite semigroup S has an associative, closed, binary operation. Inverses, identity, commutativity are NOT assumed.

The **commuting probability** of S is the probability that $x \star y = y \star x$ if x, y are chosen uniformly at random. Which probabilities in $(0, 1]$ are possible?

Previously: the set of possible values are dense in $(0, 1]$. Now: the set of possible values are (all rationals in) $(0, 1]$.
A finite semigroup S has an associative, closed, binary operation. Inverses, identity, commutativity are NOT assumed.

The commuting probability of S is the probability that $x * y = y * x$ if x, y are chosen uniformly at random.

Which probabilities in $(0, 1]$ are possible?

Previously: the set of possible values are dense in $(0, 1]$. Now: the set of possible values are (all rationals in) $(0, 1]$.
First Semigroup Family

Set $x \star y = f(x)$, where $f : S \to S$ is:

\[|S| = a + b + c + 2k \]
$x \star y = f(x)$

- f is idempotent, hence this is associative
- Commuting probability is $\frac{a^2+b^2+c^2+4k}{(a+b+c+2k)^2}$.
- Using Lagrange’s four-square theorem, can achieve every rational in $(0, \frac{1}{3}]$.
\[x \star y = f(x) \]

- \(f \) is idempotent, hence this is associative
- Commuting probability is \(\frac{a^2 + b^2 + c^2 + 4k}{(a+b+c+2k)^2} \).
- Using Lagrange’s four-square theorem, can achieve every rational in \((0, \frac{1}{3}]\).
\[x \star y = f(x) \]

- \(f \) is idempotent, hence this is associative

- Commuting probability is \(\frac{a^2 + b^2 + c^2 + 4k}{(a+b+c+2k)^2} \).

- Using Lagrange’s four-square theorem, can achieve every rational in \((0, \frac{1}{3}]\).
Second Semigroup Family

Rank function $r : S \rightarrow \mathbb{N}$ is given below.

If $r(x) > r(y)$ then $x \star y = y \star x = x$.

If $r(x) = r(y)$ then $x \star y = x$.

$$|S| = a + b + c + 2k$$
\[x \star y = x \text{ or } y\]

- \(x \star y \star z\) is of those in \(\{x, y, z\}\) with highest rank, the one that is first in the expression. Associative.

- Commuting probability is

 \[1 - \frac{a^2 + b^2 + c^2 + 4k - (a + b + c + 2k)}{(a + b + c + 2k)^2}.

- Using Lagrange’s four-square theorem, can achieve every rational in \((2/3, 1]\).
$x \star y = x \text{ or } y$

• $x \star y \star z$ is of those in \{x, y, z\} with highest rank, the one that is first in the expression. Associative.

• commuting probability is $1 - \frac{a^2 + b^2 + c^2 + 4k - (a + b + c + 2k)}{(a + b + c + 2k)^2}$.

• Using Lagrange’s four-square theorem, can achieve every rational in $(\frac{2}{3}, 1]$.
\[x \star y = x \text{ or } y \]

- \(x \star y \star z \) is of those in \(\{x, y, z\} \) with highest rank, the one that is first in the expression. Associative.

- commuting probability is \(1 - \frac{a^2+b^2+c^2+4k-(a+b+c+2k)}{(a+b+c+2k)^2} \).

- Using Lagrange’s four-square theorem, can achieve every rational in \((\frac{2}{3}, 1]\).
First Semigroup Alteration

Given semigroup S, we make two copies S_1, S_2.

$$x_1 \star y_2 = y_2 \star x_1 = x_1; \quad x_i \star y_i = (x \star y)_i.$$

This is associative (several cases).

If S had commuting probability $\frac{m}{n}$, then this alteration has commuting probability $(\frac{m}{n} + 1)/2$.

Applying it to the first construction gives all rationals in $(\frac{1}{2}, \frac{2}{3}]$.

First Semigroup Alteration

Given semigroup \(S \), we make two copies \(S_1, S_2 \).
\[
x_1 \star y_2 = y_2 \star x_1 = x_1; \quad x_i \star y_i = (x \star y)_i.
\]

This is associative (several cases).

If \(S \) had commuting probability \(\frac{m}{n} \), then this alteration has commuting probability \(\frac{m}{n} + 1 \)/2.

Applying it to the first construction gives all rationals in \((1/2, 2/3]\).
First Semigroup Alteration

Given semigroup S, we make two copies S_1, S_2.

$$x_1 \star y_2 = y_2 \star x_1 = x_1; \quad x_i \star y_i = (x \star y)_i.$$

This is associative (several cases).

If S had commuting probability $\frac{m}{n}$, then this alteration has commuting probability $(\frac{m}{n} + 1)/2$.

Applying it to the first construction gives all rationals in $(\frac{1}{2}, \frac{2}{3}]$.
First Semigroup Alteration

Given semigroup S, we make two copies S_1, S_2.

$x_1 \star y_2 = y_2 \star x_1 = x_1; \quad x_i \star y_i = (x \star y)_i.$

This is associative (several cases).

If S had commuting probability $\frac{m}{n}$, then this alteration has commuting probability $(\frac{m}{n} + 1)/2$.

Applying it to the first construction gives all rationals in $(1/2, 2/3]$.
Given semigroup S, we make two copies S_1, S_2.

$$x_i \star y_j = (x \star y)_i.$$

$$x_i \star y_j \star z_k = (x \star y \star z)_i.$$

Associative.

If S had commuting probability $\frac{m}{n}$, then this alteration has commuting probability $\frac{m}{2n}$.

Applying it to the second construction gives all rationals in $(\frac{1}{3}, \frac{1}{2}]$.

Second Semigroup Alteration
Second Semigroup Alteration

Given semigroup S, we make two copies S_1, S_2.
$x_i \star y_j = (x \star y)_i$.

$x_i \star y_j \star z_k = (x \star y \star z)_i$. Associative.

If S had commuting probability $\frac{m}{n}$, then this alteration has commuting probability $\frac{m}{2n}$.

Applying it to the second construction gives all rationals in $(\frac{1}{3}, \frac{1}{2}]$.
Second Semigroup Alteration

Given semigroup S, we make two copies S_1, S_2.

$$x_i \star y_j = (x \star y)_i.$$

$$x_i \star y_j \star z_k = (x \star y \star z)_i.$$ Associative.

If S had commuting probability $\frac{m}{n}$, then this alteration has commuting probability $\frac{m}{2n}$.

Applying it to the second construction gives all rationals in $(\frac{1}{3}, \frac{1}{2}]$.
Second Semigroup Alteration

Given semigroup S, we make two copies S_1, S_2.

$$x_i \star y_j = (x \star y)_i.$$

$$x_i \star y_j \star z_k = (x \star y \star z)_i. \text{ Associative.}$$

If S had commuting probability $\frac{m}{n}$, then this alteration has commuting probability $\frac{m}{2n}$.

Applying it to the second construction gives all rationals in $(\frac{1}{3}, \frac{1}{2}]$.
Conclusions

\[(0, \frac{1}{3}] \cup (\frac{2}{3}, 1] \cup (\frac{1}{2}, \frac{2}{3}] \cup (\frac{1}{3}, \frac{1}{2}] = (0, 1].\]

Open: Find a single family.

Open: Use just two alterations with some trivial starter groups.

See http://www-rohan.sdsu.edu/~vadim for paper.
Conclusions

\((0, 1/3] \cup (2/3, 1] \cup (1/2, 2/3] \cup (1/3, 1/2] = (0, 1].\)

Open: Find a single family.

Open: Use just two alterations with some trivial starter groups.

See http://www-rohan.sdsu.edu/~vadim for paper.