The Multi-Dimensional Frobenius Problem

J. Amosa I. Pascub V. Ponomarenkoc,\ast E. Treviñod Y. Zhange

aDepartment of Mathematics, Kansas State University
bDepartment of Mathematics, Wellesley College
cDepartment of Mathematics, San Diego State University
dDepartment of Mathematics, Dartmouth College
eDepartment of Mathematics, Harvard University

Research supported in part by NSF grant 0097366.

Abstract

Consider the problem of determining maximal vectors g such that the Diophantine system $Mx = g$ has no solution. We provide a variety of results to this end: conditions for the existence of g, conditions for the uniqueness of g, bounds on g, determining g explicitly in several important special cases, constructions for g, and a reduction for M.

\textit{Key words:} Frobenius, coin-exchange, linear Diophantine system

\ast Corresponding author: vadim123@gmail.com
1 Introduction

Let m, x be column vectors from \mathbb{N}_0. Georg Frobenius focused attention on determining maximal g such that the linear Diophantine equation $m^T x = g$ has no solutions. This problem has attracted substantial attention in the last 100+ years; for a survey see the book [1], which contains almost 500 references as well as applications to algebraic geometry, coding theory, linear algebra, algorithm analysis, discrete distributed systems, and random vector generation. A natural generalization of this problem (and essential to some applications) is to determine maximal vector(s) g such that the system of linear Diophantine equations $M x = g$ has no solutions. This has attracted relatively little attention, perhaps because maximality must be subject to a partial vector ordering. We attempt to redress this injustice by providing a variety of results in this multi-dimensional context.

We fix \mathbb{R}^n. For any real matrix X and any $S \subseteq \mathbb{R}$, we write X_S for $\{Xs : s \in S^k\}$, where k denotes the number of columns of X. Abusing this notation slightly, we write X_1 for the vector $X 1^k$. We fix $M \subseteq \mathbb{Z}_{n \times (n+m)}$, and write $M = [A|B]$, where A is $n \times n$. We call $A_{\mathbb{R}_{\geq 0}}$ the cone, and $M_{\mathbb{R}_{\geq 0}}$ the monoid. $|A|$ denotes henceforth the absolute value of $\det A$. If $|A| \neq 0$, then we follow [2] and call the cone volume. If each column of B lies in the volume cone, then we call M simplicial. Unless otherwise noted, we assume henceforth that M is simplicial. Note that if $n \leq 2$, then we may always rearrange columns to make M simplicial. For $x \in \mathbb{R}^n$, we call $x + M_{\mathbb{R}_{\geq 0}} = x + A_{\mathbb{R}_{\geq 0}}$ the cone at x, writing cone(x).

Let $u, v \in \mathbb{R}^n$. If $u - v \in A_{\mathbb{Z}}$, then we write $u \equiv v$ and say that u, v are equivalent mod A. If $u - v \in A_{\mathbb{R}_{\geq 0}}$, then we write $u \geq v$. If $u - v \in A_{\mathbb{R}_{>0}}$, then we write $u \succ v$. Note that $u \succ v$ implies $u \geq v$, and $u \succ v \geq w$ implies $u \succ w$.
however, $u \geq v$ does not necessarily imply that $u \succ v$. For $v \in \mathbb{R}^n$, we write $[\succ v] = \{ u \in \mathbb{Z}^n : u \succ v \}$. We say that v is complete if $[\succ v] \subseteq M_{n_0}$. We set G, more precisely $G(M)$, to be the set of all \geq-minimal complete vectors. We call elements of G Frobenius vectors; they are the vector analogue of g that we will investigate.

Set $Q = (1/|A|)\mathbb{Z} \subseteq \mathbb{Q}$. Although G is defined in \mathbb{R}^n, in fact it is a subset of Q^n, by the following result. Furthermore, the columns of B are in $A_{Q\geq 0}$; hence $M_{Q\geq 0} = A_{Q\geq 0}$ and without loss we henceforth work over Q rather than over \mathbb{R}.

Proposition 1 Let $v \in \mathbb{R}^n$. There exists $v^* \in Q^n$ with $[\succ v] = [\succ Av^*]$ and $v \geq Av^*$.

PROOF. We choose $v^* \in Q^n$ such that $A^{-1}v - v^* = \epsilon = (\epsilon_1, \epsilon_2, \ldots, \epsilon_n)$ with $0 \leq \epsilon_i < 1/|A|$. Multiplying by A we get $v - Av^* = Ae$; hence $v \geq Av^*$. We will now show that for $u \in \mathbb{Z}^n$, $u \succ v$ if and only if $u \succ Av^*$. If $u \succ v$, then $u \succ Av^*$ because $u \succ v \geq Av^*$. On the other hand, suppose that $u \succ Av^*$ and $u \not\succ v$. Hence $u - Av^* \in A_{\mathbb{R} \geq 0}$ and $u - v \in A_{\mathbb{R}} \setminus A_{\mathbb{R} \geq 0}$. Multiplying by A^{-1} we get $A^{-1}u - v^* \in I_{\mathbb{R} \geq 0}$ and $A^{-1}u - A^{-1}v \in I_{\mathbb{R}} \setminus I_{\mathbb{R} \geq 0}$. Therefore, there is some coordinate i with $(A^{-1}u - v^*)_i > 0$ and $(A^{-1}u - A^{-1}v)_i \leq 0$. Because $u \in \mathbb{Z}^n$ and A is an integer matrix, we have $A^{-1}u \in Q^n$; hence in fact $(A^{-1}u - v^*)_i \geq 1/|A|$. Now, $0 \geq (A^{-1}u - A^{-1}v)_i = (A^{-1}u - v^* - (A^{-1}v - v^*))_i = (A^{-1}u - v^*)_i - \epsilon_i \geq 1/|A| - \epsilon_i$. However, this contradicts $\epsilon_i < 1/|A|$.

Let $x, y \in M_{Q\geq 0}$. We write $x = Ax', y = Ay'$, with $x', y' \in \left(Q^{\geq 0}\right)^n$, define z' via $(z')_i = \max((x')_i, (y')_i)$, and set lub$(x, y) = Az'$. We have lub$(x, y) \in M_{Q\geq 0}$, although in general lub$(x, y) \notin M_{n_0}$ (even if $x, y \in M_{n_0}$) because $A^{-1}B$ need not have integer entries.
For \(u \in M_Q \), we set \(V(u) = (u + A_{Q \cap (0,1)}) \cap \mathbb{Z}^n \). It was known to Dedekind [3] that \(|V(u)| = |A| \), and that \(V(u) \) is a complete set of coset representatives mod \(A \) (as restricted to \(\mathbb{Z}^n \)). Note that \(u \) is complete if and only if \(V(u) \subseteq M_{\mathbb{N}_0} \).

The following equivalent conditions on \(M \) generalize the one-dimensional notion of relatively prime generators. Portions of the following have been repeatedly rediscovered [4,5,2,6,7]. We assume henceforth, unless otherwise noted, that \(M \) possesses these properties. We call such \(M \) dense.

Theorem 2 The following are equivalent:

1. \(G \) is nonempty.
2. \(M \mathbb{Z} = \mathbb{Z}^n \).
3. For all unit vectors \(e_i \) (\(1 \leq i \leq n \)), \(e_i \in M \mathbb{Z} \).
4. There is some \(v \in M_{\mathbb{N}_0} \) with \(v + e_i \in M_{\mathbb{N}_0} \) for all unit vectors \(e_i \).
5. The GCD of all the \(n \times n \) minors of \(M \) has absolute value 1.
6. The elementary divisors of \(M \) are all 1.

PROOF. The proof follows the plan \((1) \leftrightarrow (4) \leftrightarrow (3) \leftrightarrow (2) \leftrightarrow (6) \leftrightarrow (5)\).

\((1) \leftrightarrow (4)\): Let \(g \in G \). Choose \(v \in [\succ g] \) far enough from the boundaries of the cone so that \(v + e_i \) is also in \([\succ g] \) for all unit vectors \(e_i \). Because \(g \) is complete, \(v \) and \(v + e_i \) are all in \(M_{\mathbb{N}_0} \). The other direction is proved in [2] (Proposition 5).

\((4) \leftrightarrow (3)\): For one direction, write \(e_i = Mf_i \). Set \(k = \max_i ||f_i||_\infty \). Set \(v = Mk^n \).

We see that \(v + e_i = M(k^n + f_i) \subseteq M_{\mathbb{N}_0} \). For the other direction, let \(1 \leq i \leq n \).

Write \(v = Mw, v + e_i = Mw', \) where \(w, w' \in \mathbb{N}_0^n \). Hence, \(e_i = M(w' - w) \subseteq M_\mathbb{Z} \).

\((3) \leftrightarrow (2)\): Let \(v \in \mathbb{Z}^n \); write \(v = (v_1, v_2, \ldots, v_n) \). Write \(e_i = Mf_i \), for \(f_i \in \mathbb{Z}^n \).

Then \(v = M \sum v_i f_i \), as desired. The other direction is trivial.

\((2) \leftrightarrow (6)\): We place \(M \) in Smith normal form: write \(M = LNR \), where \(N \) is a
diagonal matrix of the same dimensions as M, and L, R are square matrices, invertible over the integers. The diagonal entries of N are the elementary divisors of M. We therefore have that (2) $\leftrightarrow N = [I|0] \leftrightarrow (6)$.

(6)\leftrightarrow(5): The product of the elementary divisors is known (see, for example, [8]) to be the absolute value of the GCD of all $n \times n$ minors of M. If they are all one, their product is one. Conversely, if their product is one, then they must all be one since they are all nonnegative integers.

Classically, there is a second type of Frobenius number f, maximal so that $m^T x = f$ has no solutions with x from N (rather than \mathbb{N}_0). This does not add much; in [9] it was shown that $f = g + m^T 1$. A similar situation holds in the vector context.

Proposition 3 Call v f-complete if $[\succ v] \subseteq M_N$. Set F to be the set of all \geq-minimal f-complete vectors. Then $F = G + M_1$.

PROOF. It suffices to show that $v \in Q^n$ is complete if and only if $v + M_1$ is f-complete. Note that an integral vector $u \in [\succ v + M_1]$ if and only if $u \succ v + M_1$ if and only if $(u - M_1) - v \in M_{\mathbb{R}_{\geq 0}}$ if and only if $(u - M_1) \succ v$ if and only if $(u - M_1) \in [\succ v]$. Now, suppose that v is complete. Let $u \in [\succ v + M_1]$; hence $(u - M_1) \in [\succ v] \subseteq M_{\mathbb{N}_0}$ and therefore $u \in M_N$. So $v + M_1$ is f-complete. On the other hand, suppose that $v + M_1$ is f-complete. Let $(u - M_1) \in [\succ v]$; hence $u \in [\succ v + M_1] \subseteq M_N$. Hence $u - M_1 \subseteq M_N - M_1 = M_{\mathbb{N}_0}$, and v is complete.

Having established the notation and basic groundwork for the problem, we now present two useful techniques: the method of critical elements, and the MIN method. Each will be shown to characterize G.

2 The Method of Critical Elements

For a vector \(u \) and \(i \in [1, n] \), let \(C^i(u) = \{ v : v \in \mathbb{Z}^n \setminus \mathbb{M}_{\mathbb{N}_0}, v = u + Aw, (w)_i = 0, (w)_j \in (0, 1] \text{ for } j \neq i \} \). This set captures all lattice points missing from the monoid, in the \(i \)-th face of \(\text{cone}(u) \), that are minimal mod \(A \). Let \(C(u) = \bigcup_{i \in [1, n]} C^i(u) \), a disjoint union of finite sets. Call elements of \(C(u) \) critical. Note that if \(v \in C^i(u) \), then \(v + Ae_i \in V(u) \). Critical elements characterize \(G \), as shown by the following.

Theorem 4 Let \(x \) be complete. The following are equivalent.

(1) \(x \in G \)

(2) Each face of \(\text{cone}(x) \) contains at least one lattice point not in the monoid.

(3) \(C^i(x) \neq \emptyset \), \(\forall i \in [1, n] \).

PROOF. We write \(x = Ax' \). For each \(i \in [1, n] \), set \(x^i = x - (1/|A|)Ae_i \) and \(S_i = \langle x^i \rangle \setminus \langle x \rangle \). Observe that \(S_i = \{ Au \in \mathbb{Z}^n : (u)_j > (x')_j \text{ for } j \neq i, (u)_i = (x')_i \} \); the \(S_i \) are the lattice points in the \(i \)-th face of \(\text{cone}(x) \).

(1) \(\rightarrow \) (2) If \(S_i \subseteq \mathbb{M}_{\mathbb{N}_0} \), then \(x^i \) is complete, which is violative of \(x \in G \).

(2) \(\rightarrow \) (3) Pick any minimal \(y \in S_i \setminus \mathbb{M}_{\mathbb{N}_0} \). Suppose that \((A^{-1}(y - x))_j \notin (0, 1] \) for \(j \neq i \); in this case, \(y - Ae_j \) would also be in \(S_i \setminus \mathbb{M}_{\mathbb{N}_0} \), violating the minimality of \(y \). Hence \(y \in C^i(x) \), and thus \(C^i(x) \neq \emptyset \).

(3) \(\rightarrow \) (1) If \(x^* < x \), then \(x^* \leq x^i \) for some \(i \). But no \(x^i \) is complete; hence \(x^* \) is not complete. Thus \(x \) is \(\geq \)-minimal complete and thus \(x \in G \).

Critical elements can also test for uniqueness of Frobenius vectors. Set \(\bar{e}_i = \bar{1} - e_i = (1, 1, \ldots, 1, 0, 1, 1, \ldots, 1) \).

Theorem 5 Let \(g \in G \). Then \(|G| = 1 \) if and only if for each \(i \in [1, n] \) there
is some $c^i \in C^i(g)$ with $c^i + k \alpha e_i \notin M_{N_0}$ for all $k \in N_0$.

PROOF. Suppose that for each $i \in [1, n]$ there is some $c^i \in C^i(g)$ with $c^i + k \alpha e_i \notin M_{N_0}$ for all k. Let $g' \in G$. If $g' \neq g$, then for some i we must have $(A^{-1}g')_i < (A^{-1}g)_i$. As $k \to \infty$, $(A^{-1}c^i + k \alpha e_i)_j \to \infty$ (for $j \neq i$). But also $(A^{-1}c^i + k \alpha e_i)_j = (A^{-1}g)_j$ for all k. Therefore, for some k we have $c^i + k \alpha e_i \succ g'$. Hence g' is not complete, which is violative of assumption. Hence $|G| = 1$.

Now, let $g \in G$ be unique, let $i \in [1, n]$ be such that each $c^i \in C^i(g)$ has some $k(i)$ with $c^i + k(i) \alpha e_i \in M_{N_0}$. If $c^i + k \alpha e_i \in M_{N_0}$, then $c^i + k' \alpha e_i \in M_{N_0}$ for any $k' \geq k$; hence because $|C^i(g)| < \infty$ there is some $K \in N_0$ with $c^i + K \alpha e_i \in M_{N_0}$ for all $c^i \in C^i(g)$. Now, set $g^* = g + (K + 1) \alpha e_i - (1/|A|) \alpha e_i$ and $S = \{g^* \setminus (g) \subseteq \{u \in Z^n : (A^{-1}(u - g))_i = 0, (A^{-1}(u - g))_j \geq K + 1 (j \neq i)\}$.

We now show that $S \setminus M_{N_0}$ is empty; otherwise, choose u therein. Set $u' = u - Aa$, where $(a)_i = 0$ and $(a)_j = \begin{cases} \lfloor (A^{-1}(u - g))_j \rfloor & (A^{-1}(u - g))_j \notin Z \\ (A^{-1}(u - g))_j - 1 & (A^{-1}(u - g))_j \in Z \end{cases}$ (for $j \neq i$). We must have $u' \in Z^n \setminus M_{N_0}$, since otherwise $u \in M_{N_0}$. We also have $(A^{-1}(u' - g))_i = 0, (A^{-1}(u' - g))_j \in (0, 1]$ for $j \neq i$; hence $u' \in C^i(g)$. But then $u' + K \alpha e_i \in M_{N_0}$ and hence $u \in M_{N_0}$ since $u - (u' + K \alpha e_i) \in A_{N_0}$.

Hence $S \subseteq M_{N_0}$ and g^* is complete. Now take $g' \in G$ with $g' \preceq g^*$. We have $(A^{-1}g')_i \leq (A^{-1}g^*)_i < (A^{-1}g)_i$ and hence $g' \neq g$, which is violative of hypothesis.

We now give two more results using this method. The first generalizes a one-dimensional reduction result in [10] which is very important because it allows the assumption that the generators are pairwise relatively prime. The vector generalization unfortunately does not permit an analogous assumption in general.
Theorem 6 Let \(d \in \mathbb{N} \) and let simplicial \(M = [A|B] \). Suppose that \(N = [A|dB] \) is dense. Then \(M \) is dense, and \(G(N) = dG(M) + (d - 1)A_1 \).

Proof. Each \(n \times n \) minor of \(M \) divides a corresponding minor of \(N \); hence \(M \) is dense. Further, \(d \) divides all minors of \(N \) apart from \(|A| \); hence \(\gcd(|A|, d) = 1 = \gcd(|A|^2, d) \). We can therefore pick \(d^* \in \mathbb{N} \) with \(d^*d \in 1 + |A|^2N_0 \). For any \(v \in Q^n \), we observe that \(d^*dv - v \in N_0|A|^2Q^n = N_0|A|\mathbb{Z}^n \subseteq A\mathbb{Z} \); hence \(d^*dv \equiv v \). Set \(\theta(x) = dx + (d - 1)A1^n \). We will show for any \(x \in Q^n \) that \(x \in M_{N_0} \) if and only if \(\theta(x) \in N_{N_0} \) (in particular, if \(\theta(x) \in N_{N_0} \), then \(x \in \mathbb{Z}^n \)). One direction is trivial; for the other, assume \(\theta(x) \in N_{N_0} \). We have \(dx + dA1^n = A(y + 1^n) + dBz \), for \(y \in N_0^n, z \in N_0^n \).

We observe that \(x + A1^n = A(1/d)(y + 1^n) + Bz \), so \(x + A1^n \geq Bz \). Also, \(d^*(x + A1^n) = Ad^*(y + 1^n) + d^*Bz \); hence \(x + A1^n \equiv Bz \). Therefore \(x + A1^n - Bz = Aw \) for some \(w \in N_0^n \). Further, \(w = (1/d)(y + 1^n) \) so in fact \(w \in \mathbb{N}^n \). Hence, \(x = A(w - 1^n) + Bz \in M_{N_0} \).

Next, we show that \(x \) is \(M \)-complete if and only if \(\theta(x) \) is \(N \)-complete. First suppose that \(\theta(x) \) is \(N \)-complete. Let \(u \in [\succ x] \); we have \(\theta(u) \in [\succ \theta(x)] \subseteq N_{N_0} \). Hence \(u \in M_{N_0} \), so \(x \) is \(M \)-complete. Now suppose that \(x \) is \(M \)-complete. Let \(u \in V(\theta(x)) \). Set \(u' \in V(x) \) with \(du' \equiv u \). We have \(u = \theta(x) + Ae, u' = x + Ae' \), where \(\epsilon, \epsilon' \in (0, 1]^n \). We compute \(u - du' = A\omega \), where \(\omega = d(1^n - \epsilon') + (\epsilon - 1) \). Because \(u \equiv du' \) we have \(\omega \in \mathbb{Z}^n \); further, the restrictions on \(\epsilon, \epsilon' \) force \(\omega \in N_0^n \). We have \(u' \in M_{N_0} \) since \(x \) is \(M \)-complete. But then \(du' \in N_{N_0} \), and thus \(u = du' + A\omega \in N_{N_0} \). Hence \(V(\theta(x)) \subseteq N_{N_0} \) and thus \(\theta(x) \) is \(N \)-complete.

Let \(g \in G(M) \); we will show that \(\theta(g) \in G(N) \). Let \(i \in [1, n] \); by Theorem 4, there is \(u \in [0, 1]^n \) with \(u_i = 0, u_j > 0 \) (for \(j \neq i \)), such that \(g + Au \in \mathbb{Z}^n \setminus M_{N_0} \). We have \(\theta(g + Au) \in \mathbb{Z}^n \setminus N_{N_0} \). We write \(\theta(g + Au) = d(g + Au) + (d - 1)A1^n = \theta(g) + Adu \). Write \(du = u' + u'' \) where \((u')_i = 0, (u')_j \in (0, 1] \), and \(u'' \in N_0^\ell \).
We have $\theta(g) + Au' \in C^i(\theta(g))$; considering all i gives $\theta(g) \in G(N)$. Now, let $g \in G(N)$; we will show that $\theta^{-1}(g) = (1/d)(g - (d - 1)A1^n) \in G(M)$. We again apply Theorem 4 to get an appropriate u with $g + Au \in \mathbb{Z}^n \setminus N_{k_0}$. Note that $g + A(u + d1^n) \in N_{k_0}$ hence $\theta^{-1}(g + A(u + d1^n)) = (1/d)(g + Au + dA1^n - (d - 1)A1^n) = \theta^{-1}(g) + (1/d)Au + A1^n \in M_{k_0} \subseteq \mathbb{Z}^n$. Thus, $\theta^{-1}(g + Au) = (1/d)(g + Au - (d - 1)A1^n) = \theta^{-1}(g) + (1/d)Au \in \mathbb{Z}^n$. We therefore have $\theta^{-1}(g + Au) \in C^i(\theta^{-1}(g))$; considering all i gives $\theta^{-1}(g) \in G(M)$.

Our last result using critical elements generalizes the one-dimensional theorem $g(a, a + c, a + 2c, \ldots, a + kc) = a[(a - 1)/k] + ac - a - c$, as proved in [11]. The following determines G, for M of a similarly special type.

Theorem 7 Fix A and vector $c \geq 0$. Set $C = c(1^n)^T$, a square matrix, and fix $k \in \mathbb{N}$. Set $M = [A|A + C|A + 2C| \cdots |A + kC]$. Suppose that M is dense. Then $G(M) = \{Ax + |A|c - A_1 - c : x \in \mathbb{N}_0^n, ||x||_1 = \lceil(|A| - 1)/k\rceil\}$.

Proof. We have $M_{k_0} = \{\sum_{i=0}^k (A + iC)x_i : x_i \in \mathbb{N}_0^n \} = \{A\sum_{i=0}^k x_i + C\sum_{i=0}^k ix_i : x_i \in \mathbb{N}_0^n \} = \{A\sum_{i=0}^k x_i + c\sum_{i=0}^k i||x||_1 : x_i \in \mathbb{N}_0^n \} = \{Ax + c\sum_{i=0}^k i||x||_1 : x_i \in \mathbb{N}_0^n ; x = \sum_{i=0}^k x_i \}$. Now, for fixed $x \in \mathbb{N}_0^n$, as we vary the decomposition $x = \sum_{i=0}^k x_i$ (for $x_i \in \mathbb{N}_0^n$), we find that $\sum_{i=0}^k i||x||_1$ takes on all values from 0 to $k||x||_1$. Hence $M_{k_0} = \{Ax + c\gamma : x \in \mathbb{N}_0^n ; \gamma \in \mathbb{N}_0, \gamma \leq k||x||_1 \}$. Choose any $x \in \mathbb{N}_0^n$ satisfying $||x||_1 = \lceil(|A| - 1)/k\rceil$. Set $T = \{Ax + c\gamma \in S : 0 \leq \gamma \leq |A| - 1\}$. By construction, we have $T \subseteq M_{k_0}$. Further, the elements of T must be inequivalent mod A, since c is a generator of the cyclic group $\mathbb{Z}/A\mathbb{Z}$. Set $h = \text{lub}(T) - A_1 = Ax + (|A| - 1)c - A_1$. Note that each $t \in T$ either has $t \in V(h)$ or $t \leq t'$ (and $t' \equiv t'$) for some $t' \in V(h)$; hence $V(h) \subseteq M_{k_0}$ and h is complete. For any $i \in [1, n]$, $|A| - 1 > k||x - e_i||_1$, so $A(x - e_i) + (|A| - 1)c \in C^i(h)$, so $h \in G(M)$. Now, let $g \in G(M)$. By Theorem
8, we have $g \geq Ax + (|A| - 1)c - A_1$, for some $x \in \mathbb{N}_0^n$ with $|A| - 1 \leq k\|x\|_1$.

By the previous, however, $Ax + (|A| - 1)c - A_1 \in G(M)$, so we have equality by the minimality of g.

3 The MIN Method

Let $\text{MIN} = \{x : x \in M_{\mathbb{N}_0^n}; \text{ for all } y \in M_{\mathbb{N}_0^n}, \text{ if } y \equiv x \text{ then } y \geq x\}$. Provided M is dense, MIN will have at least one representative of each of the $|A|$ equivalence classes mod A. MIN is a generalization of a one-dimensional method in [9]; the following result shows that it characterizes G.

Theorem 8 Let $g \in G$. Then $g = \text{lub}(N) - A_1$ for some complete set of coset representatives $N \subseteq \text{MIN}$. Further, if $n < |A|$ then there is some $N' \subseteq N$ with $|N'| = n$ and $\text{lub}(N) = \text{lub}(N')$.

PROOF. Observe that $V(g) \subseteq [\succ g]$; hence $V(g) \subseteq M_{\mathbb{N}_0^n}$ since g is complete.

Let $\text{MIN}' = \{u \in \text{MIN} : \exists v \in V(g), u \equiv v, u \leq v\}$. Now, for $v \in C^i(g)$, we have $v + Ae_i \in V(g)$. Let $v_{\text{MIN}} \in \text{MIN}'$ with $v_{\text{MIN}} \equiv v + Ae_i$ and $v_{\text{MIN}} \leq v + Ae_i$.

We must have $(A^{-1}v_{\text{MIN}})_i \geq (A^{-1}v)_i + 1 = (A^{-1}g)_i + 1$ because otherwise $v \in v_{\text{MIN}} + A_{\mathbb{N}_0^n}$ and therefore $v \in M_{\mathbb{N}_0^n}$, which is violative of $v \in C^i(g)$.

Set $N' = \{v_{\text{MIN}} : i \in [1,n]\}$; we have $\text{lub}(N') \geq g + A_1$. But also we have $g + A_1 = \text{lub}(V(g)) \geq \text{lub}(\text{MIN}') \geq \text{lub}(N')$. Hence all the inequalities are equalities, and in fact $\text{lub}(N') = \text{lub}(N)$ for any N with $N' \subseteq N \subseteq \text{MIN}'$.

Finally, we note that $|N'| \leq n$ but also we may insist that $|N'| \leq |A|$ because $|V(g)| = |A|$.

Elements of MIN have a particularly nice form; this is quite useful in computations.
Theorem 9 \(\text{MIN} \subseteq \{ Bx : x \in \mathbb{N}_0^m, ||x||_1 \leq |A| - 1 \} \).

PROOF. Let \(v \in \text{MIN} \subseteq M_{\mathbb{N}_0} \). Write \(v = Mv' \), where \(v' \in \mathbb{N}_0^{n+m} \). Suppose that \((v')_i > 0\), for \(1 \leq i \leq n \). Set \(w' = v' - e_i \) and \(w = Mw' \). We see that \(w \equiv v, w \leq v, \text{and } w \in M_{\mathbb{N}_0} \); this contradicts \(v \in \text{MIN} \). Hence \(\text{MIN} \subseteq B_{\mathbb{N}_0} \).

Let \(z = Bx \in \text{MIN} \). Suppose \(||x||_1 \geq |A| \); then we start with 0 and increment one coordinate at a time, building a sequence \(B0 = Bv_0 \leq Bv_1 \leq Bv_2 \leq \cdots \leq Bv_{||x||_1} = z \) where each \(v_i \in \mathbb{N}_0^m \). We may do this since \(M \) is simplicial. Because there are at least \(|A| + 1 \) terms, two (say \(Bv_a \leq Bv_b \)) are congruent mod \(A \). \(z - Bv_b \in M_{\mathbb{N}_0} \) and so \(y = z - (Bv_b - Bv_a) \in M_{\mathbb{N}_0} \). But \(y \leq z \) and \(y \equiv z \); this violates \(z \in \text{MIN} \).

Corollary 10 \(|G| \text{ is finite.}\)

The following result, proved first in [12] and rediscovered in [13], generalizes the classical one-dimensional result on two generators \(g(a_1, a_2) = a_1a_2 - a_1 - a_2 \). Note that in this special case of \(m = 1 \), we must have \(|G| = 1\) and \(G \subseteq \mathbb{Z}^n \); neither of these necessarily holds for \(m > 1 \).

Corollary 11 If \(m = 1 \) then \(G = \{|A|B - A_1 - B\} \).

PROOF. By Theorem 9, we have \(\text{MIN} = \{0, B, 2B, \ldots, (|A| - 1)B\} \), a complete set of coset representatives. By Theorem 8, any \(g \in G \) must have \(g + A_1 = \text{lub}(\text{MIN}) = (|A| - 1)B \).

Corollary 11 can be extended to the case where the column space of \(B \) is one dimensional, using as an oracle function the (one-dimensional) Frobenius number. In this special case we again have \(|G| = 1\) and \(G \subseteq \mathbb{Z}^n \).
Theorem 12 Consider dense $M = |A|B$ with B a column vector ($m = 1$). Let $C = [c_1, c_2, \ldots, c_m] \in \mathbb{N}^m$. Suppose that $P = [|A| \mid C]$ is dense. Then $N = |A|B$ is dense, and $G(N) = \{G(P)B + |A|B - A_1\}$.

PROOF. By Theorem 9, we have $\text{MIN}(M) = \{0, B, \ldots, (|A| - 1)B\}$. Hence $\mathbb{Z}^n/A\mathbb{Z}^n$ is cyclic, and B is a generator. Let S denote the set of all $n \times n$ minors of M, apart from $|A|$. We have $\gcd(|A|, \{c_i s : 1 \leq i \leq m, s \in S\}) = \gcd(|A|, \gcd(c_1, c_2, \ldots, c_m) \gcd(S)) = \gcd(|A|, \gcd(S)) = 1$, where we have used the denseness of M and P. Hence N is dense. By Theorem 9 again, we have $\text{MIN}(N) \subseteq B_{\mathbb{N}_0}$. We now show that $G(P)B / \in M_{\mathbb{N}_0}$. Suppose otherwise; we then write $G(P)B = Ax + BCy$ and hence $Ax = Bq$ for $q = (G(P) - Cy)$. We conclude that $q \equiv 0 \mod |A|$ for some $k \in \mathbb{N}$ ($k > 0$ since M is simplicial) since B generates $\mathbb{Z}^n/A\mathbb{Z}^n$. We now have $BG(P) = Bk|A| + BCy$, hence $G(P) = k|A| + Cy$. But now $G(P) - 1$ is complete (with respect to P), which violates the definition of $G(P)$. Therefore $G(P)B /\not\in M_{\mathbb{N}_0}$. On the other hand, if $\alpha \in \mathbb{Z}$ and $\alpha > G(P)$ we have $\alpha = k|A| + Cy$, for some $k, y \in \mathbb{N}_0$. Therefore, we have $B\alpha = k|A|B + BCy = A(k|A|A^{-1}B) + BCy \in M_{\mathbb{N}_0}$ (note that $A^{-1}B \in Q^{\geq 0}$ since M is simplicial). Hence, $T = \{G(P)B + kB : k \in [1, |A|]\} \subseteq M_{\mathbb{N}_0}$, with $\text{lub}(T) = G(P)B + |A|B = \beta$. Let $g \in G(N)$, and let M be chosen as in Theorem 8 with $|M| = |A|$. Since T is a complete set of coset representatives and both T and $\text{MIN}(N)$ lie on $B\mathbb{R}$, we have $\text{lub}(M) \leq \text{lub}(\text{MIN}(N)) \leq \text{lub}(T) = G(P)B + |A|B = \beta$. However, the coset of β is precisely $\{G(P)B + k|A|B : k \in \mathbb{Z}\}$. Therefore, β is the unique representative of its equivalence class in MIN, and thus $\beta \in M$ and $\text{lub}(M) = \beta$. Hence $g + A_1 = \beta$ for all $g \in G$, as desired.
We give two more results using this method. First, we present a \leq-bound of G; this generalizes a one dimensional bound, attributed to Schur in [14]:

$$g(a_1, a_2, \ldots, a_k) \leq a_1a_k - a_1 - a_k \text{ (where } a_1 < a_2 < \cdots < a_k).$$

Note that Corollary 11 shows that equality is sometimes achieved.

Theorem 13 $G \leq \text{lub}(\{|A|b - A_1 - b : b a column of } B\})$.

PROOF. Let $x \in \text{MIN}$, fix $1 \leq i \leq n$, and write $(A^{-1}x)_i = (A^{-1}Bx')_i = (\sum_b(x')_bA^{-1}b)_i$, where b ranges over all the columns of B. Set b^* to be a column of B with $(A^{-1}b^*)_i$ maximal; we have $(A^{-1}x)_i \leq (A^{-1}b^*)_i||x'||_1 \leq (A^{-1}b^*)_i(|A| - 1)$, applying Theorem 9. By the choice of b^*, and by varying i, we have shown that $x \leq \text{lub}(|A| - 1)B$ and hence $\text{lub}(\text{MIN}) \leq \text{lub}(\{|A| - 1\})$.

For any $g \in G$, we apply theorem 8 and have $g + A_1 \leq \text{lub}(\text{MIN}) \leq \text{lub}(\{|A| - 1\})$.

Finally, we characterize possible G in our context for the special case $m = 1$. This generalizes a one-dimensional construction found in [15]; it is an open problem to determine if all G are possible if we allow $m = 2$.

Theorem 14 Let $g \in \mathbb{Z}^n$. There exists a simplicial, dense, M with $m = 1$ and $G = \{g\}$ if and only if $(1/2)g \notin \mathbb{Z}^n$.

PROOF. Suppose $(1/2)g \notin \mathbb{Z}^n$. By applying an invertible change of basis if necessary, we assume without loss that $g \in \mathbb{N}^n$ and that $(1/2)(g)_1 \notin \mathbb{Z}$. Set $A = \text{diag}(2, 1, 1, \ldots, 1)$, and set $B = A_1 + g$. For $i \in [1, n]$, define A_{i1} to be A with the ith column replaced by B. Note that $\det A = 2$ and $\det A_{i1} = 2 + (g)_1$ (which is odd); hence M is dense. We now apply Corollary 11 to get $G = \{g\}$, as desired. Suppose now that we have a simplicial dense M, with $G = \{g\}$ and $(1/2)g \in \mathbb{Z}^n$. Applying Corollary 11 again, we get that $g + A_1 = (|A| - 1)B$.

Suppose that $|A|$ were odd. Then each coordinate of $(|A| - 1)B$ is even, as is each coordinate of g; hence so is each coordinate of A_1. Considering the integers mod 2, we have $|A| = 1$ but $A_1 = 0^n$, a contradiction. Therefore we must have $|A|$ even. We now consider the system $A(x_1, x_2, \ldots, x_n)^T = B$. We may apply Cramer’s rule since $|A| \neq 0$ and $B \neq 0^n$; we find that, uniquely, $\det A_i = x_i|A|$.

We now consider the system reduced mod 2 (working in $\mathbb{Q}/2\mathbb{Q}$) and find that 1^n solves the reduced system, as $B = |A|B - g - A_1 \equiv -A1^n \equiv A1^n \pmod{2}$. Hence, each x_i is in fact an odd integer, and thus $\det A_i$ is an even integer. Consequently, all $n \times n$ minors of M are even, which is violative of the denseness of M.

The authors would like to gratefully acknowledge the helpful comments of an anonymous referee.

References

