1. Let R, S, T be sets. Suppose that |S| < |T| (this means that $|S| \le |T|$ but $|S| \ne |T|$). Suppose further that |R| = |S|. Prove that |R| < |T|. You may use only the definitions of \le and =, and the CSB theorem, but not any of the homework exercises.

Because |R| = |S|, there is a bijection $f : R \to S$. Because $|S| \le |T|$, there is an injection $g : S \to T$.

First, we prove that $|R| \leq |T|$. Define a function $h : R \to T$ via h(x) = g(f(x)). We now prove that h is an injection from R to T. Suppose that h(x) = h(x'), i.e. g(f(x)) = g(f(x')). Because g is an injection, f(x) = f(x'). Because f is an injection, x = x'.

Now, we prove that $|R| \neq |T|$. Suppose otherwise; there would then be a bijection $H: R \to T$, and hence a bijection $H^{-1}: T \to R$. We now prove that $|T| \leq |S|$. Define a function $G: T \to S$ via $G(x) = f(H^{-1}(x))$. Suppose that G(x) = G(x'), i.e. $f(H^{-1}(x)) = f(H^{-1}(x'))$. Because f is an injection, $H^{-1}(x) = H^{-1}(x')$. Because H^{-1} is an injection, x = x'. Hence $|T| \leq |S|$; but also $|S| \leq |T|$. By the CSB theorem, |S| = |T|, which contradicts the assumption that $|S| \neq |T|$.

2. Let S be "the largest possible set", perhaps the set of all sets. Then surely |S| is the largest possible cardinal. Find a larger cardinal, proving that there is no largest possible set.

 2^{S} is the power set of S, the set of all subsets of S. 2^{S} is a set whose cardinality is bigger than the cardinality of S. This is by Cantor's Theorem (Exercise 6 from handout 8), which states that $|2^{S}| > |S|$. Proving this was nice, but not necessary – I gave full credit for citing this as Cantor's Theorem or citing the homework exercises.

This problem was essentially all-or-nothing, as the only method we have learned to generate a set of larger cardinality is by taking the power set. Solutions mentioning 2^{S} got most or all of the credit, while solutions that did not got very little credit.

3. Exam grades: 96, 90, 85, 75, 70, 66, 66, 58, 51