
MATH 579 Exam 5 Solutions

Part I: Prove that p(n) ≤ p(n−1)+p(n+1)
2

, for n ∈ N.

A bit of algebra shows that the statement is equivalent to q(n +
1) ≥ q(n), for the function q(n) = p(n) − p(n − 1). Let’s call
a “nice” partition one where each part is at least 2. Thm 5.20
in the text states that q(n) counts nice partitions. We now es-
tablish a bijection between nice partitions of n and certain nice
partitions of n + 1, namely the ones that have their largest part
strictly bigger than the second-largest part. Given a nice parti-
tion of n, we add 1 to the largest part. This gives a nice partition
of n + 1, which is a bijection between the two sets in question.
Hence q(n + 1) ≥ q(n).
NOTE: It isn’t enough to add 1 to an arbitrary part of a nice
partition of n; that is not 1-1.

Part II:

1. Find a formula for S(n, 2), for n ≥ 2.

The number of surjective functions from [n] to [2] is 2!S(n, 2).
There are 2n functions altogether; however two are not sur-
jective: the one that sends everything to 1, and the one that
sends everything to 2. Solving 2n − 2 = 2S(n, 2) we get
S(n, 2) = 2n−1 − 1.

2. Find a formula for S(n, 3), for n ≥ 3.

The number of surjective functions from [n] to [3] is 3!S(n, 3).
There are 3n functions altogether; however three send every-
thing to just one place, and

(
3
2

)
(2n−2) send everything to two

places (applying the previous problem). Hence 3n − 3(2n −
2)−3 = 6S(n, 3); solving, we get S(n, 3) = 0.5(3n−1−2n+1).

3. Find the number of compositions of 25 into 5 odd parts.

By subtracting one from each part, we get a bijection between
compositions of 25 into 5 odd parts, and weak compositions
of 20 (=25-5) into 5 even parts. By dividing each part in
half, we get a bijection between weak compositions of 20 into
5 even parts, and weak compositions of 10 into 5 parts. For



this we have a formula, namely
(
14
10

)
= 1001.

4. Prove that pk(n) ≤ (n− k + 1)k−1, for 1 ≤ k ≤ n.

We give a process that will yield various partitions with k
parts, among them all partitions of n into k parts. For each
part, we select from [1, n−k +1], and we do this k−1 times.
For the last part, there is at most one possible choice to make
the sum n; if possible, we take it, otherwise it doesn’t matter
what we take. This process has (n − k + 1)k−1 outcomes.
We now show that every possible partition of n into k parts
occurs, by showing that each such partition must have each
part at most n−k+1. If not, then some part must be greater
than this, but the other k − 1 parts have sum at least k − 1,
so together the sum would be greater than n.

5. Prove that B(n) ≥
(

n
2

)
, for n ≥ 0.

SOLUTION 1: Thm 5.12 states: B(n+1) =
∑

i

(
n
i

)
B(i). We

first prove the lemma that B(n) ≥ n. We proceed by strong
induction on n; for n = 0 the claim is 0 ≥ 0, which is true.
Now B(n + 1) =

∑
i

(
n
i

)
B(i) ≥

∑
i∈[0,n] 1 = n + 1.

Now we use the lemma to prove our result. B(n + 1) =∑
i

(
n
i

)
B(i) ≥

∑
i∈[0,n] i = n(n+1)

2
=

(
n+1

2

)
, as desired.

SOLUTION 2: Induction on n; we need extra base cases be-
cause we need n ≥ 3 in our induction: B(0) = 1 ≥ 0 =

(
0
2

)
,

B(1) = 1 ≥ 0 =
(
1
2

)
, B(2) = 2 ≥ 1 =

(
2
2

)
, and B(3) =

3 ≥ 3 =
(
3
2

)
. By Thm. 5.12, B(n + 1) =

∑
i

(
n
i

)
B(i) ≥=∑

i

(
n
i

)(
i
2

)
≥

(
n
2

)(
2
2

)
+

(
n
n

)(
n
2

)
= n(n−1)

2
+ n(n−1)

2
= n(2n−2)

2
≥

n(n+1)
2

=
(

n+1
2

)
, where we used the inductive hypothesis at

the beginning and n ≥ 3 at the end (to prove 2n−2 ≥ n+1).

SOLUTION 3: Bell numbers are defined as B(n) =
∑

k S(n, k) ≥
S(n, n − 1) =

(
n
2

)
(for n ≥ 2). For n = 0, 1, we use B(0) =

1 ≥ 0 =
(
0
2

)
, B(1) = 1 ≥ 0 =

(
1
2

)
.

Exam grades: High score=104, Median score=66 (ouch!), Low score=52


