
MATH 579: Combinatorics
Homework 5 Solutions

1. (Symmetry)
(
a+b
a

)
=
(
a+b
b

)
.

Since a+b, a ∈ Z with a+b ≥ a ≥ 0, we may use the factorial form of the binomial coefficient.(
a+b
a

)
= (a+b)!

a!((a+b)−a)! = (a+b)!
a!b!

= (a+b)!
b!a!

== (a+b)!
b!((a+b)−b)! =

(
a+b
b

)
.

2. (Pascal’s Rule)
(
x
a

)
+
(

x
a+1

)
=
(
x+1
a+1

)
.

We calculate (a + 1)xa + xa+1 = xa
(
(a + 1) + (x − (a + 1) + 1)

)
= xa(x + 1) = (x + 1)a+1.

Divide both sides by (a + 1)! and the result follows.

3. (Extraction)
(
x
a

)
= x

a

(
x−1
a−1

)
. (provided a 6= 0)

Peeling off the first term, we see that xa = x ·(x−1)a−1. Divide both sides by a! = a ·(a−1)!
and the result follows.

4. (Committee/Chair) (a + 1)
(

x
a+1

)
= x

(
x−1
a

)
.

This symmetric version of the extraction identity comes from multiplying both sides by a,
and replacing a by a + 1. It gets its name from the special case when x ∈ N. Then, the
LHS counts the ways to pick a committee of a + 1 out of x people, then pick a chair from
the committee’s members. The RHS counts the ways to pick the chair first, out of x people,
then pick the remaining a members of the committee out of the remaining x− 1 people.

5. (Twisting)
(
x
a

)(
x−a
b

)
=
(
x
b

)(
x−b
a

)
.

We see that xa(x−a)b = x(x−1) · · · (x−a+ 1)(x−a)(x−a−1) · · · (x−a− b+ 1) = xa+b =
x(x− 1) · · · (x− b + 1)(x− b)(x− b− 1) · · · (x− b− a + 1) = xb(x− b)a. Divide both sides
by a!b! = b!a! and the result follows.

6. (Negation)
(
x
a

)
= (−1)a

(
a−x−1

a

)
.

We write xa = (x−0)(x−1)(x−2) · · · (x−a+2)(x−a+1) = (−1)a(0−x)(1−x)(2−x) · · · (a−
x−2)(a−x−1) = (−1)a(a−x−1)(a−x−2) · · · (2−x)(1−x)(0−x) = (−1)a(a−x−1)(a−
x− 2) · · · (a− x− 1− (a− 3))(a− x− 1− (a− 2))(a− x− 1− (a− 1)) = (−1)a(a− x− 1)a.
Divide both sides by a! and the result follows.

7.
(− 1

2
a

)
= (−1)a

(
2a
a

)
2−2a.

For this problem and the next it is useful (but not necessary) to define the double factorial,

n!! = n · (n−2)!!, with 0!! = 1!! = 1. We now prove a lemma: For n = 2k−1 odd, n!! = (2k)!
2kk!

.

Proof: Induction on k. k = 1, 1!! = 1 = 2!
211!

. Assume that n!! = (2k)!
2kk!

, and multiply both sides

by n+ 2 = 2k+ 1. We get (n+ 2)!! = (n+ 2) ·n!! = (2k+1)·(2k)!
2kk!

= (2k+2)(2k+1)·(2k)!
(2k+2)2kk!

= (2(k+1))!
2k+1(k+1)!

.

Now, (−1
2
)a = (−1

2
)(−1

2
− 1)(−1

2
− 2) · · · (−1

2
− a + 1) = (−1

2
)(−3

2
)(−5

2
) · · · (−2a−1

2
) =

(−1)a2−a(2a− 1)!! = (−1)a2−a (2a)!
2aa!

= (−1)a2−2a (2a)!
a!

. Now divide both sides by a!.

8.
( 1

2
a

)
= (−1)a+1

(
2a
a

)
2−2a

2a−1 .

We have (1
2
)a = (1

2
)(1

2
−1)(1

2
−2) · · · (1

2
−a+1) = (1

2
)(−1

2
)(−3

2
) · · · (−2a−3

2
) = (−1)a−12−a(2a−

3)!! = (−1)a−12−a (2a−2)!
2a−1(a−1)! = (−1)a−12−a(2a− 3)!! = (−1)a−12−a (2a)(2a−1)(2a−2)!

(2a)(2a−1)2a−1(a−1)! =

= (−1)a−12−a (2a)!
2aa!(2a−1) = (−1)a+12−2a 1

2a−1
(2a)!
a!

. Now divide both sides by a!.



9. (Chu-Vandermonde)

(
x + y

a

)
=

a∑
k=0

(
x

k

)(
y

a− k

)
. Hint: (t + 1)x(t + 1)y

Assuming |t| < 1, we apply Newton’s binomial theorem three times as follows.
∑

a≥0
(
x+y
a

)
ta =

(t + 1)x+y = (t + 1)x(t + 1)y =
(∑

a≥0
(
x
a

)
ta
) (∑

a≥0
(
y
a

)
ta
)

=
∑

a≥0
(∑a

k=0

(
x
k

)(
y

a−k

))
ta, using

the formula for the product of power series. We now equate coefficients of ta and are done.

10. (Chu-Vandermonde II) (x + y)a =
a∑

k=0

(
a

k

)
xkya−k.

Multiply both sides of the Chu-Vandermonde identity by a! and note that a!
(
x
k

)(
y

a−k

)
=

a!
k!(a−k)!x

kya−k =
(
a
k

)
xkya−k.

11.
∑a

k=0

(
a
k

)2
=
(
2a
a

)
. Hint: Chu-Vandermonde

Apply Chu-Vandermonde with x = y = a. Note that, by the symmetry identity,
(

a
a−k

)
=
(
a
k

)
.

12. (Hockey Stick)
a+b∑
k=a

(
k

a

)
=

(
a + b + 1

a + 1

)
.

Induction on b. If b = 0, the LHS is
(
a
a

)
= 1 =

(
a+1
a+1

)
. Suppose now that

∑a+b
k=a

(
k
a

)
=
(
a+b+1
a+1

)
,

and add
(
a+b+1

a

)
to both sides. We have

∑a+b+1
k=a

(
k
a

)
=
(
a+b+1

a

)
+
(
a+b+1
a+1

)
=
(
a+b+2
a+1

)
, applying

Pascal’s Rule.

13. Suppose that b ≤ a−1
2

. Then
(
a
b

)
≤
(

a
b+1

)
.

We have a ≥ 2b+1, hence a−b ≥ b+1, hence 1
b+1
≥ 1

a−b . We multiply both sides by a!
b!(a−b−1)!

to get a!
(b+1)!(a−b−1)! ≥

a!
b!(a−b)! , the desired result.

14. Suppose that b ≥ a−1
2

. Then
(
a
b

)
≥
(

a
b+1

)
.

Set b′ = a− (b+ 1). Since b ≥ a−1
2

, b+ 1 ≥ a+1
2

, and hence b′ = a− (b+ 1) ≤ a− a+1
2

= a−1
2

.
Apply the previous problem to get

(
a
b′

)
≤
(

a
b′+1

)
. Apply the symmetry identity twice to get(

a
a−b′
)
≤
(

a
a−b′−1

)
, which is the desired result since a− b′ = b + 1 and a− b′ − 1 = b.

This problem, and the previous, prove that each row of Pascal’s triangle is nondecreasing
until the middle, and then nonincreasing. Such sequences are called unimodal.

15. 4n

2n+1
≤
(
2n
n

)
≤ 4n. Hint: (1 + 1)2n

We have 4n = (1 + 1)2n =
∑2n

i=0

(
2n
i

)
, by Newton’s binomial theorem. Since all the

summands are nonnegative, if we replace all but
(
2n
n

)
with zero, the sum only decreases:

4n =
∑2n

i=0

(
2n
i

)
≥
(
2n
n

)
. This gives the upper bound. By unimodality proved by the previous

two problems, the largest summand is
(
2n
n

)
. Hence if we replace each summand by this

largest one, the sum only increases: 4n =
∑2n

i=0

(
2n
i

)
≤ (2n+ 1)

(
2n
n

)
. Dividing by 2n+ 1 gives

the lower bound.


