7.

MATH 521A: Abstract Algebra
Homework 3 Solutions

. Let n,c € N, and let a,b € Z. Suppose that a = b (mod n). Prove that ac = bc (mod n). Show

that the converse does not hold [by giving an example of a, b, ¢, n where ac = be (mod n) but a # b
(mod n)].

Since a = b (mod n), n|(a —b). Thus, there is some k € Z with a — b = kn. Multiplying both sides
by ¢ gives ac — be = (kc)n. Since ke € Z, we have n|(ac — be) and hence ac = be (mod n).

Many counterexamples are possible; one is n = 4,6 = 0,b = 2,¢c = 2. We have ac =0 =4 = bc
(mod n), but a =0# 2="> (mod n).

Find an integer z such that 22 = 2 (mod 31).

A bit of trial and error gives us x = 8, or z = 23 (i.e. —8). These are the only integers with
0 < z < 30 that are modular square roots of 2.

Which of [0], [1],[2], [3], [4] is equal to [23™)], in Zs?

We start by calculating [2!] = [2],[2%] = [4], [23] = [3],[2%] = [1],[2°] = [2], ..., all in Z5. Note that
the pattern repeats after [2%], i.e. after every FOUR exponents. Hence, to find [2"] in Zs, we need
to find n mod 4. Now, 3' mod 4 = 3,32 mod 4 = 1,33 mod 4 = 3,.... Hence, to find [3™] in
Z4, we need to find m mod 2. Here we have m = 45, so m mod 2 = 1. Hence [3™] = [3!] in Z4,
son mod 4 = 3. Hence [2"] = [23] = [3] in Zs.

Let a,b € Z. Prove that (a + b)® = a® 4+ b3 (mod 3). This is (a special case of) a theorem called
the Freshman’s Dream.

We calculate (a + b)3 — (a® + %) = (a® + 3a®b + 3ab? + b3) — (a® + b®) = 3(a®b + ab?®). Since
a®b + ab® € Z, we have 3|(a + b)3 — (a® + b?) and hence (a +b)® = a® + b> (mod 3).

Let n € N, and a,b € Z. Suppose that a = b (mod n). Prove that ged(a,n) = ged(b,n).

By the symmetry between a and b, it suffices to prove that ged(a,n) < ged(b,n). Set d = ged(a,n)
for convenience. Since a = b (mod n), n|(a —b). Thus there is some integer k with a — b = kn. We
rearrange to b = a — kn. Since d|a and d|n, we can write a = da’,n = dn’ for some integers a’,n’.
We now have b = da’ — kdn' = d(a’ — kn’). Hence d|b. But we also have d|n, so d is a common
factor of b,n. Thus, by definition of ged, we have d < ged (b, n).

. Write the @-addition and ®-multiplication tables of Zg.

@ [[0] 1] [2] [3] [4] [5] [6] [7] [8] © |[0] 1] [2] [3] [4] [5] [6] [7] [8]
o] [[o] 1] 2] [3] [4] [5] [6] [7] [§] [0] |[0] [0] [o] [0} [0] [0] [o] [0] [O]
[ |0] 21 (3] [4] [5] [6] [7] [8] [0] [ 1o [1 2] [3] [4] [5] [6] [7] [8]
2] 112] 3] (4 [5] [6] [7] [8] [0] [1] 21 (o] [2] [4] [6] [8] [1] (3] [5] [7]
31 |(3] [4] [5] [6] [7] [8] [0] [1] [2] 3] [{0] [3] (6] [0] [3] [6] [0] (3] [6]
[4] 114] [5] (6] [7] [8] [0] [1] [2] [3] [4] |[o] (4] (8] B [7] (2 [6] [1] [5]
51 (5] [6] [7] (8] [0] [1] [2] [3] [4] [51 [{o] [5] (1] [6] [2] [7] [3] (8] [4]
(6] (6] [7] 8] [0] [1] [2] (3] [4] [5] (6] |[0] [6] [3] [0] [6] [3] [0] [6] [3]
(7] |[7) 18] [o] [1] [2] [3] [4] [5] [6] (71 (o] [7] (5] [3] [1] [8) [6] [4] [2]
8] [[8] [0] (1] 21 [3] [4] [5] [6] [7] 8] [{o] [8] [71 [6] [5] [4 [3] [2] 1]

For Zg, find the neutral additive element, the neutral multiplicative element, and all zero divisors.
Be sure to justify your answer.



(a®3d,besl).

(a,b) ® (a’, V)

and

[0].

{(a,b) : a € Zs3,b € Z3}, the set of ordered pairs of elements, one from Zs and

(a®sa,bdsb)

[6] © [3] = [6] © [6]
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The neutral additive element is [0] and the neutral multiplicative element is [1]. The zero divisors
are those elements that have a factor in common with 9, namely [3] and [6]. To justify, note that

We have [1] @ [1] = [2] © [5] = [4] © [7] = [8] @ [8], 0 [1], 2], 4], 3], [7] [§] are the units.
one from another copy of Z3. We define operations in the natural way, i.e. componentwise:

We define Z3 X Z3
(a,b) ® (d’,b)

8] © [3]
. Write the @-addition and ®-multiplication tables of Zs x Zs.

8. For Zg, find all the units and specify each inverse.
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([1],[1])} Note that every invertible

element happens to be its own inverse, in this ring. This is quite unusual.

of the nonzero elements are zero divisors: ([0],[1]) ® ([1],[0]) = ([0], [2]) ® ([2], [0]) = ([0], [0]). Note

that although Z3 x Zs and Zg both have nine elements, they have different multiplicative structure.

The neutral additive element is ([0], [0]) and the neutral multiplicative element is ([1], [1]). Just half
Just half of the nonzero elements are units (those that are not zero divisors): ([1], [1]) ® ([1],[1]) =

(2], (1) © (2], [1) = ((1], [2)) © ([1], [2]) = ([2], [2]) © ([2], [2])

divisors. Be sure to justify your answer.
11. For Zs x Zs, find all the units and specify each inverse.



