MATH 521A: Abstract Algebra

Homework 3 Solutions

1. Let $n, c \in \mathbb{N}$, and let $a, b \in \mathbb{Z}$. Suppose that $a \equiv b \pmod{n}$. Prove that $ac \equiv bc \pmod{n}$. Show that the converse does not hold [by giving an example of a, b, c, n where $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$].

Since $a \equiv b \pmod{n}$, n|(a-b). Thus, there is some $k \in \mathbb{Z}$ with a-b=kn. Multiplying both sides by c gives ac-bc=(kc)n. Since $kc \in \mathbb{Z}$, we have n|(ac-bc) and hence $ac \equiv bc \pmod{n}$.

Many counterexamples are possible; one is n=4, a=0, b=2, c=2. We have $ac=0 \equiv 4=bc \pmod{n}$, but $a=0 \not\equiv 2=b \pmod{n}$.

2. Find an integer x such that $x^2 \equiv 2 \pmod{31}$.

A bit of trial and error gives us x = 8, or x = 23 (i.e. -8). These are the only integers with $0 \le x \le 30$ that are modular square roots of 2.

3. Which of [0], [1], [2], [3], [4] is equal to $[2^{(3^{45})}]$, in \mathbb{Z}_5 ?

We start by calculating $[2^1] = [2], [2^2] = [4], [2^3] = [3], [2^4] = [1], [2^5] = [2], \ldots$, all in \mathbb{Z}_5 . Note that the pattern repeats after $[2^4]$, i.e. after every FOUR exponents. Hence, to find $[2^n]$ in \mathbb{Z}_5 , we need to find $n \mod 4$. Now, $3^1 \mod 4 = 3, 3^2 \mod 4 = 1, 3^3 \mod 4 = 3, \ldots$. Hence, to find $[3^m]$ in \mathbb{Z}_4 , we need to find $m \mod 2$. Here we have m = 45, so $m \mod 2 = 1$. Hence $[3^m] = [3^1]$ in \mathbb{Z}_4 , so $n \mod 4 = 3$. Hence $[2^n] = [2^3] = [3]$ in \mathbb{Z}_5 .

4. Let $a, b \in \mathbb{Z}$. Prove that $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$. This is (a special case of) a theorem called the Freshman's Dream.

We calculate $(a+b)^3 - (a^3+b^3) = (a^3+3a^2b+3ab^2+b^3) - (a^3+b^3) = 3(a^2b+ab^2)$. Since $a^2b+ab^2 \in \mathbb{Z}$, we have $3|(a+b)^3 - (a^3+b^3)$ and hence $(a+b)^3 \equiv a^3+b^3 \pmod{3}$.

5. Let $n \in \mathbb{N}$, and $a, b \in \mathbb{Z}$. Suppose that $a \equiv b \pmod{n}$. Prove that $\gcd(a, n) = \gcd(b, n)$.

By the symmetry between a and b, it suffices to prove that $gcd(a, n) \leq gcd(b, n)$. Set d = gcd(a, n) for convenience. Since $a \equiv b \pmod{n}$, n|(a-b). Thus there is some integer k with a-b=kn. We rearrange to b=a-kn. Since d|a and d|n, we can write a=da', n=dn' for some integers a', n'. We now have b=da'-kdn'=d(a'-kn'). Hence d|b. But we also have d|n, so d is a common factor of b, n. Thus, by definition of gcd, we have $d \leq gcd(b,n)$.

6. Write the \oplus -addition and \odot -multiplication tables of \mathbb{Z}_9 .

\oplus	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		\odot	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	-	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]		[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]		[2]	[0]	[2]	[4]	[6]	[8]	[1]	[3]	[5]	[7]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]		[3]	[0]	[3]	[6]	[0]	[3]	[6]	[0]	[3]	[6]
[4]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]		[4]	[0]	[4]	[8]	[3]	[7]	[2]	[6]	[1]	[5]
[5]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]		[5]	[0]	[5]	[1]	[6]	[2]	[7]	[3]	[8]	[4]
[6]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]		[6]	[0]	[6]	[3]	[0]	[6]	[3]	[0]	[6]	[3]
[7]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]		[7]	[0]	[7]	[5]	[3]	[1]	[8]	[6]	[4]	[2]
[8]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]		[8]	[0]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

7. For \mathbb{Z}_9 , find the neutral additive element, the neutral multiplicative element, and all zero divisors. Be sure to justify your answer.

The neutral additive element is [0] and the neutral multiplicative element is [1]. The zero divisors are those elements that have a factor in common with 9, namely [3] and [6]. To justify, note that $[3] \odot [3] = [6] \odot [3] = [6] \odot [6] = [0]$.

8. For \mathbb{Z}_9 , find all the units and specify each inverse.

We have $[1] \odot [1] = [2] \odot [5] = [4] \odot [7] = [8] \odot [8]$, so [1], [2], [4], [5], [7], [8] are the units.

We define $\mathbb{Z}_3 \times \mathbb{Z}_3 = \{(a, b) : a \in \mathbb{Z}_3, b \in \mathbb{Z}_3\}$, the set of ordered pairs of elements, one from \mathbb{Z}_3 and one from another copy of \mathbb{Z}_3 . We define operations in the natural way, i.e. componentwise: $(a, b) \oplus (a', b') = (a \oplus_3 a', b \oplus_3 b')$ and $(a, b) \odot (a', b') = (a \odot_3 a', b \odot_3 b')$.

9. Write the \oplus -addition and \odot -multiplication tables of $\mathbb{Z}_3 \times \mathbb{Z}_3$.

```
([0], [2])
                                                                                      ([2], [0])
                                                                                                               ([2],[2])
                        ([0],[1])
                                                 ([1],[0])
                                                             ([1],[1])
                                                                          ([1],[2])
                                                                                                  ([2],[1])
([0], [0])
                                                                                                  ([2],[1])
            ([0],[0])
                         ([0],[1])
                                     ([0],[2])
                                                 ([1],[0])
                                                             ([1],[1])
                                                                          ([1],[2])
                                                                                      ([2],[0])
                                                                                                               ([2], [2])
                                                                                                  ([2],[2])
([0],[1])
            ([0],[1])
                        ([0], [2])
                                     ([0], [0])
                                                 ([1],[1])
                                                             ([1],[2])
                                                                          ([1],[0])
                                                                                      ([2],[1])
                                                                                                               ([2], [0])
([0], [2])
            ([0], [2])
                        ([0], [0])
                                    ([0],[1])
                                                 ([1],[2])
                                                             ([1],[0])
                                                                          ([1],[1])
                                                                                      ([2],[2])
                                                                                                  ([2],[0])
                                                                                                               ([2],[1])
([1],[0])
            ([1],[0])
                        ([1],[1])
                                    ([1],[2])
                                                 ([2], [0])
                                                             ([2],[1])
                                                                          ([2],[2])
                                                                                      ([0], [0])
                                                                                                  ([0],[1])
                                                                                                               ([0],[2])
                                                                          ([2], [0])
                                                 ([2],[1])
                                                             ([2],[2])
                                                                                                  ([0], [2])
                                                                                                               ([0], [0])
([1],[1])
            ([1],[1])
                        ([1],[2])
                                     ([1],[0])
                                                                                      ([0],[1])
([1],[2])
            ([1],[2])
                        ([1],[0])
                                    ([1],[1])
                                                 ([2],[2])
                                                             ([2],[0])
                                                                          ([2],[1])
                                                                                      ([0],[2])
                                                                                                  ([0],[0])
                                                                                                               ([0],[1])
([2], [0])
            ([2],[0])
                        ([2],[1])
                                    ([2],[2])
                                                 ([0], [0])
                                                             ([0],[1])
                                                                          ([0], [2])
                                                                                      ([1], [0])
                                                                                                  ([1],[1])
                                                                                                               ([1],[2])
                        ([2],[2])
                                    ([2], [0])
                                                 ([0],[1])
                                                             ([0], [2])
                                                                          ([0],[0])
                                                                                      ([1],[1])
                                                                                                  ([1],[2])
                                                                                                               ([1],[0])
([2],[1])
            ([2],[1])
            ([2],[2])
                                                 ([0],[2])
                                                             ([0], [0])
                                                                                      ([1],[2])
([2],[2])
                        ([2], [0])
                                    ([2],[1])
                                                                          ([0],[1])
                                                                                                  ([1],[0])
                                                                                                               ([1],[1])
    \odot
            ([0], [0])
                         ([0],[1])
                                     ([0], [2])
                                                 ([1],[0])
                                                             ([1],[1])
                                                                          ([1],[2])
                                                                                      ([2], [0])
                                                                                                  ([2],[1])
                                                                                                               ([2], [2])
([0], [0])
            ([0], [0])
                         ([0], [0])
                                     ([0], [0])
                                                 ([0], [0])
                                                             ([0], [0])
                                                                          ([0], [0])
                                                                                      ([0], [0])
                                                                                                  ([0], [0])
                                                                                                               ([0], [0])
                                                                          ([0],[2])
                                                                                                               ([0], [2])
([0],[1])
            ([0], [0])
                        ([0],[1])
                                    ([0], [2])
                                                 ([0],[0])
                                                             ([0],[1])
                                                                                      ([0], [0])
                                                                                                  ([0],[1])
([0], [2])
            ([0], [0])
                        ([0], [2])
                                     ([0],[1])
                                                 ([0],[0])
                                                             ([0], [2])
                                                                          ([0],[1])
                                                                                      ([0], [0])
                                                                                                  ([0],[2])
                                                                                                               ([0],[1])
([1], [0])
            ([0], [0])
                        ([0], [0])
                                    ([0], [0])
                                                 ([1],[0])
                                                             ([1],[0])
                                                                          ([1],[0])
                                                                                      ([2],[0])
                                                                                                  ([2], [0])
                                                                                                               ([2], [0])
                                                                          ([1],[2])
                                                                                                  ([2],[1])
([1],[1])
            ([0], [0])
                        ([0],[1])
                                    ([0], [2])
                                                 ([1],[0])
                                                             ([1],[1])
                                                                                      ([2], [0])
                                                                                                               ([2],[2])
([1],[2])
            ([0], [0])
                        ([0], [2])
                                    ([0],[1])
                                                 ([1],[0])
                                                             ([1],[2])
                                                                          ([1],[1])
                                                                                      ([2], [0])
                                                                                                  ([2],[2])
                                                                                                               ([2],[1])
([2], [0])
            ([0], [0])
                        ([0], [0])
                                    ([0], [0])
                                                 ([2], [0])
                                                             ([2], [0])
                                                                          ([2],[0])
                                                                                      ([1],[0])
                                                                                                  ([1],[0])
                                                                                                               ([1],[0])
            ([0], [0])
                        ([0], [1])
                                    ([0], [2])
                                                 ([2], [0])
                                                             ([2],[1])
                                                                          ([2],[2])
                                                                                      ([1],[0])
                                                                                                  ([1],[1])
                                                                                                               ([1],[2])
([2],[1])
                                                 ([1],[0]) ([1],[2])
([2],[2])
           |([0],[0])|
                        ([0], [2])
                                    ([0],[1])
                                                                         ([1],[1])
                                                                                     ([2], [0])
                                                                                                  ([2],[2])
                                                                                                               ([2],[1])
```

10. For $\mathbb{Z}_3 \times \mathbb{Z}_3$, find the neutral additive element, the neutral multiplicative element, and all zero divisors. Be sure to justify your answer.

The neutral additive element is ([0], [0]) and the neutral multiplicative element is ([1], [1]). Just half of the nonzero elements are zero divisors: ([0], [1]) \odot ([1], [0]) = ([0], [2]) \odot ([2], [0]) = ([0], [0]). Note that although $\mathbb{Z}_3 \times \mathbb{Z}_3$ and \mathbb{Z}_9 both have nine elements, they have different multiplicative structure.

11. For $\mathbb{Z}_3 \times \mathbb{Z}_3$, find all the units and specify each inverse.

Just half of the nonzero elements are units (those that are not zero divisors): $([1], [1]) \odot ([1], [1]) = ([2], [1]) \odot ([2], [1]) = ([1], [2]) \odot ([1], [2]) = ([2], [2]) \odot ([2], [2]) = ([1], [1])$. Note that every invertible element happens to be its own inverse, in this ring. This is quite unusual.