
MATH 254: Introduction to Linear Algebra
Chapter 0: Fundamental Definitions of Linear Algebra

Behold the most important ideas of the course, in bold. Please memorize them; they will be tested on
every exam. Further, you need to understand them in all their intricacies – you should be able to provide
examples and determine whether an object you are given meets a particular definition or not. A definition is
a sentence and must satisfy all ordinary rules of English grammar. Generally each noun, verb, and adjective
in a definition is essential and omitting even one of these would not be correct.

1. A vector space is a collection of objects called vectors, together with a way to add vectors
and multiply by real numbers (called scalars). These latter properties are together called closure;
two equivalent statements are given in the comments. We normally denote the vector space with upper
case letters like V,U,W , and the vectors themselves with lower case letters like u, v, v1, v

′. Sometimes to
emphasize that they are vectors we will put a bar or arrow over the top as u or ~u.

2. For any set of vectors {v1, v2, . . . , vk}, their span is the set {a1v1 +a2v2 + · · ·+akvk}, where
each of a1, a2, . . . , ak varies over every real number. Note that the span is also a set of vectors, which is
a subset of the vector space from which the original set is drawn. We denote it as Span(v1, v2, . . . , vk), and call
the elements of this set linear combinations of v1, v2, . . . , vk. More compactly, we write Span(v1, v2, . . . , vk) =

{a1v1 + a2v2 + · · ·+ akvk : a1, a2, . . . , ak ∈ R} = {
∑k

i=1 aivi : ai ∈ R}.

The next five definitions are the most important examples of vector spaces, at least in this course.

3. The linear function space in a set of variables {x1, x2, . . . , xk} is their span, or (using the
above notation) Span(x1, x2, . . . , xk). Note: the vectors in this vector space are linear functions, such
as 3x or 4x− 2y. Note that a linear function may NOT include a constant, e.g. 4x+ 5y + 3 is not linear.

4. The polynomial space in a variable t, denoted P (t), is the set of all polynomials in the
single variable t. Note: the vectors in this vector space are polynomials, like 2 + t or 3 + 7t− 4t5. Often
we prefer a subset of this space, by restricting to a maximum degree n, which we denote Pn(t). For example,
6t2 + 3t− 4 and −4t2 + 8 are both in P (t), and also P2(t), P3(t), . . .. Neither is in P1(t) or P0(t).

5. For any positive integers m,n, the matrix space Mm,n is the set of all matrices with m
rows and n columns (with real numbers as entries). Note: the vectors in this vector space are
matrices, like ( 1 2

3 5 ). If m = n we say the matrix is square, and sometimes abbreviate Mn,n as Mn.

6. For any positive integer n, the standard vector space Rn is the set of all n-tuples of real
numbers. Note: the vectors in this vector space are lists of n numbers, like (1, 2) or (4, 5, 6). These lists do
not have an inherent orientation and may be written as convenient. A simple and pleasant example is with
n = 2, namely R2 = {(x, y) : x, y ∈ R}, because it’s easy to draw vectors as arrows on the Cartesian plane.

7. For any set of vectors {v1, v2, . . . , vk} drawn from vector space V , we say that this set is
spanning if Span(v1, v2, . . . , vk) = V . We know that Span(v1, v2, . . . , vk) ⊆ V holds for any set of
vectors, so {v1, v2, . . . , vk} is spanning if Span(v1, v2, . . . , vk) ⊇ V also holds.

8. For any set of vectors {v1, v2, . . . , vk}, their nondegenerate span is the set {a1v1 + a2v2 +
· · ·+ akvk}, where each of a1, a2, . . . , ak varies over every real number except a1 = a2 = · · · =
ak = 0. Note that the regular span will always contain the vector 0, but the nondegenerate span may or
may not contain 0.

9. For any set of vectors {v1, v2, . . . , vk}, we say that this set is dependent if their nondegen-
erate span contains the vector 0. Otherwise, we say this set is independent; i.e. if their nondegenerate
span does not contain the vector 0.

10. For any set of vectors {v1, v2, . . . , vk} drawn from vector space V , we say that this set is
a basis for V if it is both spanning and independent.



Comments on the Definitions:

1. Vector space closure in V can be expressed in either of the following two ways:

Closure 1: For every set of vectors v1, v2, . . . , vk all in V , and for every set of real numbers a1, a2, . . . , ak,
the linear combination a1v1 + a2v2 + · · ·+ akvk is a vector again in V .

Closure 2: Both (a) “scalar multiplication” and (b) “vector addition” hold, where:
(a) For every vector v in V , and every real number a, the product av is a vector again in V .
(b) For every two vectors u, v in V , their sum u+ v is a vector again in V .

Typically, if you already know that V is closed, you use Closure 1. However, if you want to prove that
V is closed, you use Closure 2. There are other properties besides closure that must hold for V to be
a vector space; we will study these in detail later.

2. Every vector space contains a zero vector. This could be it; we call this the “trivial vector space”. If
there is even one more vector, then there are infinitely many more; this can be proved by using scalar
multiplication repeatedly.

3. If we set a linear function equal to a constant, e.g. 2x+ 3y = 4, we call this a linear equation.

4. The span is defined on (takes as input) a set of vectors, typically finite. Its product is (its value or
output) is also a set of vectors. This product is an infinite set, with the sole exception of Span(0) = {0}.

5. “Spanning”, “Dependent”, and “Basis” are all properties that a set of vectors does or does not possess.

6. The standard basis for the linear function space on a set of variables, is exactly that set of variables.
For example, the standard basis for the linear function space on {x, y} is {x, y}.

7. The standard basis for Pn(t) is the set {1, t, t2, . . . , tn}. Note that this contains not n but n+1 vectors.

8. The standard basis for P (t) is the set {1, t, t2, . . .}. Note that this contains infinitely many vectors.

9. The standard basis for Mm,n is the set of mn matrices, each of which has all zero entries except for
a single 1 entry. The mn possible locations of this 1 entry correspond to the different matrices. For
example, M2,2 has basis {( 1 0

0 0 ) , ( 0 1
0 0 ) , ( 0 0

1 0 ) , ( 0 0
0 1 )}. This is a set of 2× 2 = 4 vectors.

10. The standard basis for Rn is denoted {e1, e2, . . . , en} where ei has all zeroes, except for a single 1 in
the ith position. For example, if n = 3, e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

11. If a set of vectors S contains two vectors, one of which is a multiple of the other, then S is dependent.
For example, S = {1 + 2t, 3 + 5t, 2 + 4t} is dependent because the first vector is half of the last one.
WARNING: the reverse need not hold. A set of vectors could be dependent even if no vector is a
multiple of another. For example, T = {1 + 2t, 3 + 5t, 4 + 7t} is dependent because the sum of the first
two vectors, minus the third, equals 0.

12. An important theorem we will learn later is that all bases of a vector space have the same size. This
size is called the “dimension” of the vector space. Hence you now know the dimension of our most
important vector spaces. For example, P2(t) is three dimensional; all of its bases consist of three
vectors.

13. If a subset of a vector space is closed, that subset must itself be a vector space. We call this a subspace
of the original vector space. This allows us to construct lots of new vector spaces, as subspaces of the
important vector spaces you already know.

Helpful Proof Techniques:

1. Know your definitions, as 100% of all proofs (not just in this course, but in all of mathematics) rely
heavily on the precise statements of definitions.

2. In particular, know the difference between a scalar (number), a vector, a set of vectors, and a vector



space. If you’re working with something you need to always know which of these types it is.

3. To prove that a set of vectors S is closed, let u, v be arbitrary vectors in S, and a be an arbitrary real
number. You need to prove that u+ v and au are both vectors in S.

4. To prove that a set of vectors S is not closed, you need a single counterexample. Either find some
u, v ∈ S where u + v /∈ S, or find some u ∈ S and a ∈ R where au /∈ S. Sometimes only one of these
two approaches will work.

5. To prove that a set of vectors S is spanning, take an arbitrary vector in V and show how to express it
as a linear combination of S.

6. To prove that a set of vectors S is not spanning, you need a single counterexample. Select one vector
in V (it may be hard to find one that works), assume that it can be expressed as a linear combination
of S, and derive a contradiction.

7. To prove that a set of vectors S is dependent, you need to find a nondegenerate linear combination
that gives the zero vector. This is typically harder the bigger S is.

8. To prove that a set of vectors S is independent, assume that a linear combination gives the zero vector,
and prove that it must be the degenerate linear combination.

9. To prove that two sets are equal, prove that each is a subset of the other.

Solved Problems

1. Carefully state the definition of “Span”.

The span of a set of vectors {v1, v2, . . . , vk} is the set of all linear combinations {a1v1+a2v2+
· · ·+ akvk}, where the ai each take on every real value.

2. Carefully state the definition of P3(t).

P3(t) is the polynomial space in the variable t, of degree at most 3. Equivalently, this is
{at3 + bt2 + ct+ d}, where a, b, c, d each take on every real value.

3. Carefully state the definition of “Dependent”.

A set of vectors is dependent if their nondegenerate span contains the vector 0.

4. Carefully state the definition of M2,2.

M2,2 is the matrix space consisting of all 2× 2 matrices.

5. Carefully state the definition of “Basis”.

A basis is a set of vectors that is both spanning and independent.

6. Give two vectors from the linear function space in x.

Many examples are possible, such as 3x,−4x, πx, 0.

7. Give two vectors from R4.

Many examples are possible, such as (0, 0, 0, 1), (1, 2, 3, 4), (−1, 0, 0, 2).

8. Consider the vector space R3, and set v = (−3, 2, 0), u = (0, 1, 4). Calculate 2v − u.

2v − u = 2(−3, 2, 0)− (0, 1, 4) = (−6, 4, 0) + (0,−1,−4) = (−6, 3,−4)

9. Consider the vector space M2,3, and set u =
(
1 2 1
1 −1 0

)
, v = ( 2 3 0

0 1 2 ). Calculate 2v − u.

2v − u = 2 ( 2 3 0
0 1 2 )−

(
1 2 1
1 −1 0

)
=
(

3 4 −1
−1 3 4

)
.

10. Consider the vector space P (t), and set u = t+ 1, v = t+ 2. Prove that 3t+ 1 is in Span(u, v).

Note that 5u−2v = 5(t+1)−2(t+2) = 3t+1, as desired. We find 5,−2 by a side calculation;
for example, t = 2u− v and 1 = −u+ v so 3t+ 1 = 3(2u− v) + (−u+ v) = 5u− 2v. We will
learn systematic ways to do this later.



11. Consider the vector space P (t), and set u = t+ 1, v = t+ 2. Prove that 3t2 + 1 is not in Span(u, v).

Because u, v are both in P1(t), their span is as well (in fact it is exactly P1(t)). However
3t2 + 1 is not in P1(t).

12. Consider the linear function space in {x, y, z}. Prove that Span(x, y) = Span(x+ y, x− y).

Because x+y = 1x+ 1y and x−y = 1x−1y, we conclude x+y, x−y are each in Span(x, y)
and hence Span(x + y, x − y) ⊆ Span(x, y). On the other hand, x = 1

2 (x + y) + 1
2 (x − y)

and y = 1
2 (x+ y)− 1

2 (x− y), so x, y are each in Span(x+ y, x− y) and hence Span(x, y) ⊆
Span(x+ y, x− y).

13. Consider the set S of all v = (v1, v2) such that |v1| ≥ |v2|. This is a subset of R2. Is it closed?

For any scalar a and any vector v in S, we calculate av = a(v1, v2) = (av1, av2). Because
|v1| ≥ |v2|, we may multiply both sides by the nonnegative |a| to get |a||v1| ≥ |a||v2| and
hence |av1| ≥ |av2|. Hence av is a vector in S; the first closure property holds.
We now take two vectors u, v in S, and calculate u+v = (u1, u2)+(v1, v2) = (u1+v1, u2+v2).
Must |u1 + v1| ≥ |u2 + v2|? Perhaps not, so we need to find a specific counterexample. Many
are possible, for example u = (3, 1), v = (−3, 1). Both of u, v are in S, but u + v = (0, 2)
is not. Hence the second closure property does NOT hold. Since both closure properties do
not hold, S is not closed.

14. Consider vector space V , and vectors v1, v2 in V . Set S = Span(v1, v2). Prove that S is closed (and
hence a subspace of V ).

Let u,w be arbitrary vectors from Span(u, v). Then there are real numbers a1, a2, b1, b2 such
that u = a1v1 + a2v2 and w = b1v1 + b2v2. We have u + w = a1v1 + a2v2 + b1v1 + b2v2 =
(a1 + b1)v1 + (a2 + b2)v2, so u+ w is in S. This proves closure of vector addition. Let c be
an arbitrary real number. Then cu = c(a1v1 + a2v2) = (ca1)v1 + (ca2)v2. Hence cu is in S.
This proves closure of scalar multiplication.

In fact, a similar proof works not just for two vectors, but for any number.

15. Consider the vector space P2(t), and set S = {a0 + a1t+ a2t
2 : a0 + a1 + a2 = 0}, a subset. Prove that

S is closed.

Let u, v be arbitrary vectors in S. Then there are real numbers a0, a1, a2, b0, b1, b2 such that
u = a0 + a1t + a2t

2 and v = b0 + b1t + b2t
2, and also a0 + a1 + a2 = 0 = b0 + b1 + b2. We

have u+ v = (a0 + b0) + (a1 + b1)t+ (a2 + b2)t2, and (a0 + b0) + (a1 + b1) + (a2 + b2) = 0,
so u + v is in S. This proves closure of vector addition. Let c be an arbitrary real number.
Then cu = (ca0) + (ca1)t+ (ca2)t2. We have (ca0) + (ca1) + (ca2) = c(a0 +a1 +a2) = c0 = 0,
so cu is in S. This proves closure of scalar multiplication.

16. Consider the vector space P (t), and set u = t − 1, v = t2 − 1, w = t2 − t. Prove that 3t + 1 is not in
Span(u, v, w).

Method 1: Suppose 3t+ 1 = a(t− 1) + b(t2 − 1) + c(t2 − t) = (b+ c)t2 + (a− c)t− (a+ b).
Equating coefficients of the polynomials in t, we conclude that b+c = 0, a−c = 3,−a−b = 1.
Adding these three equations we get 0 = 4; hence there is no solution.
Method 2: Let S = {a0 + a1t+ a2t

2 : a0 + a1 + a2 = 0}, a subset of P2(t). S is closed by the
preceding problem. Since u, v, w ∈ S, also Span(u, v, w) ⊆ S. However 3t+ 1 is not in S, so
it cannot be in Span(u, v, w).

17. Consider the vector space R2, and set u = (1, 1), v = (2, 3), w = (0, 5). Prove that {u, v, w} is
dependent.

To prove that {u, v, w} is dependent, we need to find a nondegenerate linear combination
yielding zero. Consider 10u− 5v+w, found by a side calculation. 10u− 5v+w = 10(1, 1)−
5(2, 3) + (0, 5) = (10, 10)− (10, 15) + (0, 5) = (0, 0). Hence, {u, v, w} is dependent.



18. Consider the vector space R2, and set u = (2, 2), v = (3, 0). Prove that {u, v} is independent.

To prove that {u, v} is independent, we need to prove that any nondegenerate linear com-
bination does not yield the zero vector. Suppose, to the contrary, that there were such a
linear combination, i.e. some constants a, b (not both zero) so that au + bv = (0, 0). We
calculate au+ bv = a(2, 2) + b(3, 0) = (2a, 2a) + (3b, 0) = (2a+ 3b, 2a) = (0, 0). So, we must
have 2a + 3b = 0 and 2a = 0. The second equation gives us a = 0; we plug that into the
first equation and get b = 0. Hence, a = b = 0 and the linear combination was actually
degenerate (a contradiction!). Hence {u, v} is independent.

19. Consider the vector space R3, and set u = (1, 1, 1), v = (−1, 0, 1), w = (1, 2, 3). Prove that {u, v, w} is
dependent.

To prove that {u, v, w} is dependent requires a nondegenerate linear combination yielding
the zero vector. We have 2u + v − w = 2(1, 1, 1) + 1(−1, 0, 1) − 1(1, 2, 3) = (2, 2, 2) +
(−1, 0, 1) + (−1,−2,−3) = (0, 0, 0), so this set is dependent. To find this linear combina-
tion, we seek constants a, b, c (not all zero) so that au + bv + cw = (0, 0, 0). We calculate
au + bv + cw = (a, a, a) + (−b, 0, b) + (c, 2c, 3c) = (a − b + c, a + 2c, a + b + 3c) = (0, 0, 0).
Hence a− b+ c = 0, a+ 2c = 0, a+ b+ 3c = 0. This system has infinitely many solutions –
choose c arbitrarily, then a = −2c, b = −c. The example above corresponded to c = −1.

NOTE: No one of u, v, w is a multiple of any one of the others, and yet they are dependent.

20. Consider the vector space R2, and set u = (2, 3). Prove that {u} is not spanning.

To prove that {u} is not spanning, we must provide a counterexample. We claim that
(1, 1) cannot be expressed as a linear combination of u, because then for some a we have
(1, 1) = a(2, 3) = (2a, 3a), and hence 2a = 1 = 3a, which is impossible.

21. Consider the vector space P1(t). Prove that {t+ 1, 2t− 1} is spanning.

Consider an arbitrary vector in P1(t), say at+ b. We consider the linear combination α(t+
1) + β(2t − 1), where α, β are real numbers given by α = a+2b

3 and β = a−b
3 (found by a

side calculation). We compute that α(t + 1) + β(2t − 1) = a+2b
3 (t + 1) + a−b

3 (2t − 1) =

t(a+2b
3 + 2a−b

3 ) + (a+2b
3 − a−b

3 ) = at+ b, as desired.

22. Consider the vector space R2, and set u = (2, 2), v = (3, 0). Prove that {u, v} is spanning.

To prove that {u, v} is spanning, we need to prove that every vector can be expressed as a
linear combination of u, v. Let x = (x1, x2) be an arbitrary vector in R2. Set a = x2/2 and
set b = (x1−x2)/3 (both real numbers no matter what x is), found by a side calculation. We
have au+ bv = a(2, 2) + b(3, 0) = (2a+ 3b, 2a) = (x1, x2) = x.

23. Consider the vector space R2, and set u = (2, 2), v = (3, 0), w = (7, 5). Prove that {u, v, w} is spanning.

To prove that {u, v, w} is spanning, we need to prove that every vector can be expressed
as a linear combination of u, v, w. Comparing with the previous problem, already every
x = au + bv, for some real a, b. Hence x = au + bv + 0w, a linear combination of {u, v, w},
so this set is also spanning.

24. Consider the vector space R3, and set u = (1, 1, 1), v = (−1, 0, 1), w = (1, 2, 3). Prove that {u, v, w} is
not spanning.

To prove that {u, v, w} is not spanning, we must find a counterexample. We claim that
x = (1, 1, 0) is such a counterexample (found by a tricky side calculation). Suppose we could
express x as a linear combination of u, v, w. Then, for some real constants a, b, c, we have
x = au + bv + cw = (a − b + c, a + 2c, a + b + 3c) = (1, 1, 0). Hence a − b + c = 1, a + 2c =
1, a+b+3c = 0. Adding the first and third equations gives 2a+4c = 1, which is inconsistent
with the second equation. Hence x = (1, 1, 0) is not expressible as a linear combination of
{u, v, w}, which is therefore not spanning.



25. Find two different bases for R2.

Many solutions are possible. An easy choice is the standard basis {e1, e2} = {(1, 0), (0, 1)}.
An earlier problem showed that {(2, 2), (3, 0)} is spanning, and another proved that {(2, 2), (3, 0)}
is independent; hence this set is a basis.

26. Consider the linear function space in {x, y, z}. Set S = Span(x+ y, x+ z). Find two bases for S.

A natural choice is {x+ y, x+ z}; this set is spanning since Span(x+ y, x+ z) = S is exactly
what we need. This set is independent because if a(x+ y) + b(x+ z) = 0 then a = b = 0 so
no nondegenerate linear combination gives 0.
For another basis, consider {x+ y,−y + z}. These are both vectors from S since −y + z =
−1(x + y) + 1(x + z). This set is independent because if a(x + y) + b(−y + z) = 0 then
a = b = 0 again. To prove it is spanning it is enough to prove S ⊆ Span(x+ y,−y + z). We
have x + y = 1(x + y) + 0(−y + z), and x + z = 1(x + y) + 1(−y + z); hence the proof is
complete.

Supplementary Problems

27. Carefully state the definition of “Vector Space”, and give ten examples.

28. Carefully state the definition of “Span”, and find a set of vectors whose span is itself.

29. Carefully state the definition of “Nondegenerate Span”, and give two examples.

30. Carefully state the definition of “Mm,n”, and give two vectors from M3,2.

31. Carefully state the definition of “Independent”, and give two examples from P2(t).

32. Consider the vectors in R3 given by u = (1, 2, 3), v = (4, 0, 1), w = (−3,−2, 5). Calculate 2u− 3v− 4w.

33. Consider S ⊆ R2 of those vectors (v1, v2) such that 2v1 + v2 = 0. Determine if S is closed.

34. Consider S ⊆ R2 of those vectors (v1, v2) such that v1v2 = 0. Determine whether or not S is closed.

35. Consider the linear function space on {x, y, z}. Determine whether or not x ∈ Span(x+y, x−z, y+z).

36. Consider the linear function space on {x, y, z}. Determine whether or not x ∈ Span(x+y, x+z, y+z).

37. Consider the linear function space on {x, y, z}. Determine whether or not x ∈ Span(x−y, x−z, y−z).
38. Consider S ⊆M2,2 of those vectors

(
a b
c d

)
such that c = 0. Determine whether or not this is closed.

39. Consider S ⊆M2,2 of those vectors
(
a b
c d

)
such that a+ c = 0. Determine whether or not this is closed.

40. Consider S ⊆M2,2 of those vectors
(
a b
c d

)
such that a+ c = 1. Determine whether or not this is closed.

41. Consider the vector space R2, and set u = (2, 6), v = (−3,−9). Determine if {u, v} is independent.

42. Consider R2, and set u = (2, 6), v = (−3,−9), w = (5, 15). Determine if {u, v, w} is independent.

43. Consider the vector space R2, and set u = (2, 6), v = (0,−9). Determine if {u, v} is independent.

44. Consider the vector space P1(t). Determine whether or not {1, 2t} is independent.

45. Consider the vector space P1(t). Determine whether or not {0, 1, 2t} is spanning.

46. Consider the vector space P1(t). Determine whether or not {6t+ 2,−9t− 3} is spanning.

47. Consider the vector space M2,2. Determine if
{(

1 −1
0 0

)
,
(

1 0
−1 0

)
,
(
1 0
0 −1

)}
is spanning.

48. Consider the vector space M2,2. Determine if
{(

1 −1
0 0

)
,
(

1 0
−1 0

)
,
(
1 0
0 −1

)
,
(

1 −1
−1 1

)}
is spanning.

49. Consider the vector space M2,2. Determine if
{(

1 −1
0 0

)
,
(

1 0
−1 0

)
,
(
1 0
0 −1

)
,
(

1 −1
−1 0

)}
is spanning.

50. Which of the sets given in problems 41-49 are bases of their respective vector spaces?

Answers to Supplementary Problems: (WARNING: these are just answers, NOT thoroughly justified solutions)
32: (2, 12,−17) 33: yes 34: no 35: yes 36: yes 37: no 38: yes 39: yes 40: no 41: no 42:
no 43: yes 44: yes 45: yes 46: no 47: no 48: no 49: yes 50: 43,44,49


