Math 254 Final Exam: 12/12/6

Please read the exam instructions.

Notes, books, papers, calculators and electronic aids are all forbidden for this exam, with the exception of a single formula page. Please write your answers on **separate paper**, indicate clearly what work goes with which problem, and put your name on every sheet. Cross out work you do not wish graded; incorrect work can lower your grade, even compared with no work at all. Keep this list of problems for your records. Show all necessary work in your solutions; if you are unsure, show it. Each problem is worth 10 points. There are 15 questions.

- 1. Carefully define the term "dimension" as it applies to vector spaces. Give two examples: a four-dimensional vector space, and an infinitedimensional vector space.
- 2. Carefully define the term "basis". Give two examples in \mathbb{R}^2 .

The following two questions involve the linear mapping $f : \mathbb{R}^3 \to \mathbb{R}^4$ given by f(x, y, z) = (x - y, y - z, z - x, x + z - 2y).

- 3. Represent f as a matrix multiplication.
- 4. Determine the rank and nullity of f.

The following two questions involve the matrix	$A = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$	$\begin{array}{c} 4\\ 0\\ 2 \end{array}$	5 1 3	$\begin{array}{c} 6 \\ 2 \\ 4 \end{array}$].
5. Use Gaussian elimination to put A into echelon	_			-	-

- 6. Find all solutions to the linear system $A[p \ q \ r \ s]^T = [1 \ 1 \ 1]^T$.
- 7. Find all solutions to the following system of linear equations.

$$\begin{array}{rcl} 4u - 3w & = & 0\\ -2u + 3v + 2w & = & -1\\ 6u - 6v - 6w & = & 1 \end{array}$$

8. Give three examples of 2×2 systems of linear equations; one each with zero, one, and infinitely many solutions. Justify your answers, providing all solutions to each system.

NOTE: THIS EXAM HAS 15 QUESTIONS; TURN THE PAGE.

- 9. Set $U = \{(a, b, c) : a + b = 2c; a, b, c \text{ are real}\}$. U is a subset of \mathbb{R}^3 . Give three vectors from U, and determine whether or not U is a vector space.
- 10. Set $V = \mathbb{R}^5$. Give any two subspaces U_1, U_2 such that $U_1 \oplus U_2 = V$.
- 11. For the vector space \mathbb{R}^3 , set $R = \text{span}\{(1,2,3)\}$. Find an orthogonal basis for R^{\perp} .
- 12. In the vector space \mathbb{R}^3 , set $S = \text{span}\{(1,2,3), (5,-2,3)\}, T = \text{span}\{(-1,2,1)\}$. Determine the dimensions of each of $S, T, S \cap T, S + T$. Justify your answers.
- 13. Let W be the vector space of functions that have as a basis $S = \{1, \sin \theta, \cos \theta, \sin 2\theta, \cos 2\theta\}$. Let D be the differential operator on W. Find the matrix representation $[D]_S$.

	The following two questions involve the matrix $B = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$.		
14.	Find the characteristic polynomial $\Delta_B(\lambda)$ (or, if you prefer, $\Delta_B(t)$); use this to determine <i>B</i> 's eigenvalues.		
15.	Find some P such that $P^{-1}BP$ is diagonal. NOTE: It is sufficient to give P ; you need not calculate P^{-1} .		