
MATH 245 S17, Exam 3 Solutions

1. Carefully define the following terms: recurrence, order of a recurrence, big Theta, set
equality.

A recurrence is a sequence in which all but finitely many terms are defined in terms
of its previous terms. The order of a recurrence is the number of steps back in the
recurrence that need to be known to compute each term. Given two sequences an, bn,
we say that an is big Theta of bn if both an = O(bn) and bn = O(an). Two sets are
equal if they contain the same elements.

2. Carefully define the following terms: Associativity of ∪ Theorem, De Morgan’s Law
for Sets Theorem, power set, Cantor’s Theorem.

The Associativity of ∪ Theorem says that for any sets R, S, T , we have R ∪ (S ∪ T ) =
(R ∪ S) ∪ T . The De Morgan’s Law for Sets Theorem says that for any sets R, S, U
with R ⊆ U and S ⊆ U , both (R ∪ S)c = Rc ∩ Sc and (R ∩ S)c = Rc ∪ Sc. Given a
set S, the power set of S is the set whose elements are all the subsets of S. Cantor’s
Theorem says that for any set S, S is not equicardinal with its power set 2S.

3. Let S, T be sets. Prove that S \ T ⊆ S.

Let x ∈ S \ T . Hence x ∈ S ∧ x /∈ T . By simplification, x ∈ S.

4. Prove that n + 100 = O(n). Note that the Classification Theorem does not help.

We need specific choices of n0,M ; many solutions are possible. One choice is n0 =
50,M = 3. Now, let n ≥ n0 = 50. We have |n+ 100| = n+ 100 ≤ n+ 2n = 3n = 3|n|.

5. Suppose an algorithm has runtime specified by recurrence relation Tn = 5Tn/2 + n2.
Determine what, if anything, the Master Theorem tells us.

In the notation of the Master Theorem, a = 5, b = 2, cn = n2. We calculate d = log2 5,
and note that d > log2 4 = 2. Hence, we can take d′ = 2 < d. Certainly cn = n2 =
O(n2) = O(nd′). Hence the “small cn” case of the Master Theorem applies, telling us
that Tn = Θ(nd) = Θ(nlog2 5).

6. Let S, T be sets. Prove that S × T is equicardinal with T × S.

We need to find an explicit pairing of S × T with T × S. The natural one is (x, y)↔
(y, x), for every x ∈ S and y ∈ T . In Chapter 13 we will have the tools to prove that
this is a pairing; for now finding it is enough.

7. Set R = {1, 2, 3, 4, 5}, S = {4, 5, 6, 7}, U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Calculate |(Rc ∪
S)c ∪ (Sc \R)c|. Be sure to justify your answer.

For convenience, let [a, b] denote all the integers between a and b, inclusive. Step by
step: Rc = [6, 10]. Rc ∪ S = [4, 10]. (Rc ∪ S)c = [1, 3]. Now, Sc = [1, 3] ∪ [8, 10].
Sc \R = [8, 10]. (Sc \R)c = [1, 7]. Finally (Rc ∪ S)c ∪ (Sc \R)c = [1, 7], so the answer
is |[1, 7]| = |{1, 2, 3, 4, 5, 6, 7}| = 7.



8. Solve the recurrence defined as a0 = a1 = 2, an = 4an−1 − 4an−2 (n ≥ 2).

The characteristic equation is r2 = 4r − 4, which factors as (r − 2)2 = 0. Hence there
is a double root, and the general solution is an = A2n + Bn2n. We use the initial
conditions to get 2 = a0 = A20 +B ·0 ·20 = A, and 2 = a1 = A21 +B ·1 ·21 = 2A+2B.
This system has solution A = 2, B = −1, so the specific solution is an = 2 · 2n − n2n

or an = 2n+1 − n2n.

9. Let S, T be sets. Prove that S∆T ⊆ S ∪ T .

SOLUTION 1: Let x ∈ S∆T . Then (x ∈ S ∧ x /∈ T ) ∨ (x /∈ S ∧ x ∈ T ). We have two
cases:
(Case x ∈ S ∧ x /∈ T ): By simplification, x ∈ S. By addition, x ∈ S ∨ x ∈ T . Hence
x ∈ S ∪ T .
(Case x /∈ S ∧ x ∈ T ): By simplification, x ∈ T . By addition, x ∈ S ∨ s ∈ T . Hence
x ∈ S ∪ T .
SOLUTION 2: We apply Thm 8.12, which states that S∆T = (S ∪ T ) \ (S ∩ T ). We
then apply the third problem on this exam, to conclude that (S∪T )\(S∩T ) ⊆ (S∪T ).
Combining these two gives the desired result.

10. Let R, S, T be sets. Prove that R× (S ∩ T ) ⊆ (R× S) ∩ (R× T ).

Let x ∈ R× (S∩T ). Then x = (a, b), where a ∈ R and b ∈ S∩T . Hence b ∈ S∧b ∈ T .
We will simplify this statement twice. By simplification the first time, b ∈ S, and hence
(a, b) ∈ R×S. By simplification the other way, b ∈ T , and hence (a, b) ∈ R×T . Now,
by conjunction, ((a, b) ∈ R× S)∧ ((a, b) ∈ R× T ). Hence, (a, b) ∈ (R× S)∩ (R× T ).
Thus x ∈ (R× S) ∩ (R× T ).


