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Foreword

This text was written to be a printed version of the one-
semester course which I had previously taught five times, over
seven years, from several not entirely suitable texts. The
course is taken by math majors, computer science majors,
and computer engineering majors, in roughly equal propor-
tions. The purpose of this course is to advance students from
consumption of mathematics to production of same. Though
the topic is, broadly, discrete mathematics (with an eye to-
ward computer science), this is merely the context in which
students are taught proof techniques and how to use them.
This desired goal is often called, vaguely, “mathematical

maturity”, which embodies not only the methods of proof,
but the methods of thought needed to construct and inter-
pret a proof. Teaching these methods of thought is difficult.
Like most mathematicians, probably, I learned these methods
of thought early in my career not from them being explicitly
explained, but from watching them being used. Unfortu-
nately, many students find this approach frustrating. Their
first proofs course appears to be a mathematics course, like so
many taken previously. However, the content is different, the
methods are different, and suddenly there are secrets that the
student needs to discover, rather than being taught explicitly.
Like other texts in the subject, this one presents a standard
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Foreword

corpus of definitions, theorems, and proof techniques. Unlike
other texts, it tries to explain to students how to read, in-
terpret, and use definitions. It explains how mathematical
thought in proofbuilding differs from the student’s previous
patterns of thought. It demonstrates not only general proof
strategies, like proof by induction, but specific methods of
thought in how to implement those strategies. Also, it builds
almost all of its techniques from scratch, giving an intellec-
tually consistent whole.

Although this text is designed for a one-term course for
lower-division students (e.g. sophomores), it does not provide
dumbed down material (or language) and useless toy exam-
ples. This text is fairly short, by design. Many supposedly
one-semester textbooks are far too long to read, much less
to read carefully. This text includes ideas from the math-
ematical disciplines of logic and proof theory – enough to
make the proofs connect rigorously, but not so much as to
overwhelm the student with jargon and notation. Students
can be confident that almost all of the content and exercises
are meaningful and useful in future coursework. To empha-
size this, connections are shown to more advanced material,
throughout the text.
Each chapter contains approximately 25 exercises. Stu-

dents are expected to solve them all, or at minimum 20 from
each chapter. The skill of writing a proof is similar to the
skill of performing a sport. Watching a proof being written
is akin to watching a video of a sport – it is useful to under-
stand technique, but a poor substitute for doing it yourself.
My feelings regarding solutions to exercises are decidedly

mixed. Students love them, and complain when they are
missing. Hence, from a customer service perspective, they
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should be provided. However, my 25 years of teaching expe-
rience indicates that exercise solutions have a strong negative
impact on student learning. The temptation is very strong
to look at the solutions before one has finished working on
a problem. Once the solution is seen, the learning stops.
Sometimes students even look at the solutions before start-
ing the problem – this eliminates any possibility of learning.
Consequently, this text provides only hints, and no complete
solutions. Instructors can feel confident that students are not
copying solutions from the back.
The most important defined terms are listed in the front.

Students absolutely need to memorize all numbered course
definitions in full detail, as well as the most important, named,
theorems. Instructors are encouraged to ask for precise state-
ments of these definitions and theorems on the various exams
of the course. The text contains many other definitions and
theorems, which are less essential to memorize (and can be
located using the index).
Should the reader find an error in this text, I would be

most grateful if it is pointed out. I will pay a bounty of up to
$5, or up to 1% course extra credit if currently enrolled in my
course, to the first person identifying each error. All errors are
eligible for this bounty – mathematical, grammatical, even
typesetting – though the size of the prize will depend on the
significance of the error.
This work was produced entirely with LATEX, which is a

typesetting language that has grown to be standard in math-
ematics and many other fields. Its text is set in Computer
Concrete font, designed by Donald Knuth; its mathematics
is set in AMS Euler font, designed by Hermann Zapf.
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Chapter 1

Mathematical Definitions

In a natural1 language such as English, normally we do not
have much use for definitions. We build up our knowledge of
the language through complicated and not very well-under-
stood means. As children, we are not told that a spoon is
a utensil consisting of a handle and a shallow bowl, used
for eating food. Instead, we are shown examples of spoons.
When we call a fork “spoon”, we are corrected; hence, we also
get examples of non-spoons. With enough practice we all
converge on (more or less) the same definition, even without
knowledge of a specific definition expressed in words. Even if
we know that definition, we would hardly ever be called upon
to use it. Dictionaries are used only rarely, typically when we
come across a word we don’t know.

1.1 The Role of Definitions

In mathematics, however, definitions play a dramatically dif-
ferent role. Almost every mathematical concept has a precise

1Non-natural languages include programming languages such as Java,
and formal languages used in mathematics.
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Chapter 1. Mathematical Definitions

definition. Further, that definition is critically important. It
is used every time that the concept is used2. Imagine if every
time you used the word spoon, you immediately followed up
with “a spoon is a utensil consisting of a handle and a shal-
low bowl, used for eating food”. That would be very strange
in English, but in mathematics this is not only normal but
essential.
A dictionary is circular, in that each word is defined in

terms of other words, which in turn are defined in terms of
other words, and so on. Similarly, mathematics would be
circular, if we allowed it, but that would be very bad. Since
definitions are such an important part of mathematics, there
must be a way to get started. In a mathematical conversation,
such as this text, some terms or concepts must be taken as
undefined starting points, and everything else is built upon
them.
In this text, we will take as our entry point “numbers”.

We include in this entry point the natural numbers N =

{1, 2, 3, . . .}, the whole numbers N0 = {0, 1, 2, 3, . . .}, the inte-
gers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the rationals Q = {ab :

a, b ∈ Z, b 6= 0}3, the reals R, the complex numbers C. For
more details, see the Appendix (found on p. 203). We will
assume that you know what all of these are, and are familiar
with standard operations and facts about them. No defini-
tions for any of these “numbers” will be given, nor will we

2The sole exception is if we prove that some other thing is equivalent
to a definition. Then we can use that other thing instead of the defini-
tion, but it will always be one or the other. Our first example of this
will be Theorem 5.15.

3The symbol ∈ means “is an element of”. This notation is explained
in depth in Chapter 8. This, and all other symbols, may also be found
in the index.
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1.1. The Role of Definitions

prove things like: the sum/difference/product of two integers
is always an integer, or the quotient two integers might not
be an integer, or the square of a real number is nonnegative.
In an abstract algebra course (which a student might take
after this present course), these things are studied carefully
and proved, using words like “ring”, “field”, “group”, “semi-
group”. However, in this text, we take numbers and their
basic properties for granted.
Here is an example of a mathematical definition, for the

term discriminant.

Definition 1.1. Let f(x) = ax2 + bx + c be a quadratic
polynomial in x. The discriminant of f(x) is the number
b2 − 4ac.

Read the above definition carefully, then set these notes
aside and try writing the definition from memory onto a sep-
arate scrap of paper. After you’ve done this, read on to see
how well you did.
It is important to read definitions with great care. Typi-

cally each word and symbol of a definition is essential. Learn-
ers of mathematics very often do not read definitions with
sufficient attention to detail. It is very tempting to focus on
the dramatic conclusion, b2 − 4ac, as the most important
part of the definition. Students frequently do this, and find
to their dismay that they have ignored or forgotten the rest.
As a mnemonic to help write correct mathematical defi-

nitions, consider the three C’s: Context, Category, Correct
English. Most definitions have context; however some simple
ones do not. In Definition 1.1, the context is that f(x) is a
quadratic polynomial. The rest of the definition doesn’t ap-
ply, or even make sense, if f(x) is not a quadratic polynomial.
There is no discriminant of the function f(x) = sin x, or at

3



Chapter 1. Mathematical Definitions

least this definition doesn’t define one. This definition de-
fines “discriminant”, not “quadratic polynomial”; however, to
make sense of the definition we need to already know what a
“quadratic polynomial” is. Either we have another definition
for that, or it’s part of our undefined entry point, such as
here.

An extremely common error that learners of mathematics
make is in confusing or ignoring the categories of objects.
Things we define are almost all special kinds of something
else. That something else is the category, which every defi-
nition (except for the undefined entry points) must have. A
spoon is a special kind of utensil. A discriminant is a special
kind of number. Some common categories are: number, in-
teger, rational number, function, polynomial, variable, equa-
tion, set, element, proposition, relation, predicate, statement.
Since definitions are extremely important, and categories are
a mandatory component of a definition, be sure to learn them
as part of the definition.
In Definition 1.1, the category of discriminant is “number”.

In other words, the discriminant is a number – not a function
or a set or a utensil. Note: the discriminant is not b2 − 4ac
(which is an object without a category), it is the number b2−
4ac. In mathematics texts, often the category “number” is
assumed as obvious. This is unfortunate, because it reinforces
the learner’s bad habit of ignoring categories.
In natural languages it is surprisingly common, particu-

larly colloquially, to avoid discussion of categories. This is
sometimes accomplished by using “when” or “where”, or by
writing the definition as a command or an activity to be per-
formed4. If your definition includes any of these, it is almost

4Example of a very poor definition: “The discriminant is where you
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1.2. Evens and Odds

certainly wrong5. Rewrite to avoid these terms, by instead
giving the object’s category.
The final C is for Correct English. This is not nitpicking.

Mathematical definitions are, among other things, English
sentences. They must parse as sentences, be readable as sen-
tences, and have correct grammar6. Any symbols must also
be readable in English. “The discriminant of eff of ecks is the
number bee squared minus four ay see”. Note that this is a
sentence, with a subject (discriminant), and a verb (is). Def-
initions typically have far fewer symbols than words. If your
definition has almost all symbols, that is a clue that perhaps
you are missing important features.

1.2 Evens and Odds

We now present a rigorous study of even and odd integers.
Their properties are not part of our entry point. Of course, we
all have intuition about this subject. We expect every integer
to be either even or odd. We do not expect any integer to
be both even and odd. We do not expect any integer to
be neither even nor odd. We expect the sum of two even
numbers to be even. And so on.
However, intuition is not adequate for a proof, merely as

a guide. Be warned: henceforth, any claim concerning even
or odd properties must be supported by a definition or a
theorem. Unsupported claims will be assumed to be merely
intuition, and marked as incorrect.

take b2 − 4ac.”
5Rare exceptions do exist, such as “Lunchtime is when we eat our

lunch”.
6. . . and, if possible, correct spelling.
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Chapter 1. Mathematical Definitions

Definition 1.2. We say that n ∈ Z is even if there is some
m ∈ Z such that n = 2m.

Definition 1.3. We say that n ∈ Z is odd if there is some
m ∈ Z such that n = 2m+ 1.

Definition 1.2 is simple enough to need no context. In large
part, this is because we have assumed many properties of Z
as our entry point. If we didn’t have this toolbox at our
disposal, we would need to give certain of those properties as
context. The category of “even” is integer. Only an integer
can possess the property of being even, at least according
to Definition 1.2. And that property consists of an integer
existing with a certain property.
Note that, given our definitions above, it is not correct

to say that an integer is odd if it is not even. There is no
reason to believe at this point that an integer must be one or
the other, or that it can’t be both. We will prove that each
integer is at least one of {odd, even} in Theorem 1.6. We
will prove that each integer is at most one of {odd, even} in
Theorem 1.7. After we have proved both results, we will know
that every integer is exactly one of {odd, even}; however, the
definitions of odd and even will remain Definitions 1.2 and
1.3. Should you later wish to claim that every integer is
exactly one of {odd, even}, you will need to cite Corollary
1.8. If you don’t, you will be using intuition only, which is
not permitted in a proof.
First let’s prove a different, simpler, theorem.

Theorem 1.4. Let a, b be even. Then a+ b is even.

Proof. Because a, b are even, there are c, d ∈ Z such that
a = 2c and b = 2d. We have a+b = 2c+2d = 2(c+d) = 2e,
for some e ∈ Z. Hence a+ b is even.

6



1.2. Evens and Odds

Read Theorem 1.4 and its proof carefully. Though short, it
is very rich in important details. Most relevant to this chapter
is the observation that Definition 1.2 is used no less than five
times (!). We begin with the hypothesis of the theorem, which
is that a, b are even. Because a is even, c must exist. Also
because b is even, d must exist. We now want to add a, b.
But we can’t add a palm tree to a spoon – we need to know
the categories of a, b, and they need to be numbers which
admit addition. We were given that a is even. Implicitly,
this means that a is an integer, because Definition 1.2 only
applies to integers. Similarly, b is an integer. Hence, a, b are
both integers, and we know how to add integers. Further, we
know (from our basic properties of integers) that e, the sum
of integers c, d, is again an integer. Now we use Definition
1.2 a fifth time, in reverse. We know that a+b is an integer,
and that a+b = 2e, where e is an integer. Hence a+b must
be even.
Note also that although Definition 1.2 contains the letters

n,m, those letters do not appear in either Theorem 1.4 or its
proof. This is very common; it is important to understand
that variables in a definition have names that are merely
placeholders. They can be renamed as needed, and often
are. In fact the proof above uses three different combina-
tions of names: (1) n = a,m = c; (2) n = b,m = d; (3)
n = a+ b,m = e.
It would be a mistake to try to simplify the proof by using

fewer letters. For example, suppose we tried to stick to the
letters of the definition more closely, writing a = 2m, b = 2m.
Now we have a problem, because we seem to have a = 2m =

b. But Theorem 1.4 is about all even a, b, including those
where a 6= b. The issue is that Definition 1.2 gives each even

7



Chapter 1. Mathematical Definitions

integer n its own integer m. In writing a = 2m, b = 2m, we
have given even integers a, b the same integer m.
Before continuing with even and odd integers, we need to

state the powerful Theorem 1.5. We will prove it later, in two
parts, as Theorems 5.14 and 6.18. We will use it now, but just
a little. If we were to make a dependency loop in our defini-
tions, this would be called a “circular definition”. In natural
languages, all definitions are circular; but in mathematics cir-
cular definitions are considered very bad. Instead we want all
definitions to flow from the undefined entry point(s).

Theorem 1.5 (Division Algorithm). Let a, b ∈ Z with b ≥
1. Then there are unique q, r ∈ Z satisfying a = bq + r

and 0 ≤ r < b.

If we forget for the moment that we haven’t yet proved
Theorem 1.5, we can use it to prove other things. For exam-
ple, we can now prove that every integer is odd or even (or
perhaps both):

Theorem 1.6. Let n ∈ Z. Then n is odd or n is even.

Proof. Apply Theorem 1.5 to n, 2 to get q, r ∈ Z satisfying
n = 2q+ r and 0 ≤ r < 2. Since r ∈ Z, either r = 0 or r = 1.
If r = 0, then n = 2q, so n is even by Definition 1.2. If r = 1,
then n = 2q+ 1, so n is odd by Definition 1.3.

Theorem 1.7. Let n ∈ Z. Prove that it is not possible for
n to be both odd and even.

Proof. Exercise 1.9.

Corollary 1.8. Let n ∈ Z. Then n is exactly one of {odd,
even}.

8



1.3. Some Important Definitions

Proof. Combine Theorems 1.6 and 1.7.

1.3 Some Important Definitions

The definitions from this section are useful not only for the
remainder of this text, but in all of mathematics.

Definition 1.9. Consider a, b ∈ Z. We say that a is less
than or equal to b, and write a ≤ b (or b ≥ a), to mean
that b − a ∈ N0. We say that a is less than b, and write
a < b (or b > a), to mean that b− a ∈ N0 and a 6= b.

We can also negate the above statements, writing a 6≤ b to
mean that a ≤ b is not true (i.e. b − a /∈ N0), and a 6< b to
mean that a < b is not true (i.e. either b−a /∈ N0 or a = b).
Inequality has various useful properties, some of which are

summarized below. We will study inequalities in more detail
in Chapter 12. We could define inequality on rationals and
reals similarly7; all of the properties of Theorem 1.10 would
still hold (but not the properties of Theorem 1.12).

Theorem 1.10. Let a, b, c ∈ Z. Then

a. a ≤ a;
b. a 6< a;
c. If a ≤ b then a 6> b;
d. If a ≤ b and b ≤ a then a = b;
e. If a ≤ b and b ≤ c, then a ≤ c;
f. If a ≤ b and b < c, then a < c;
g. If a < b and b ≤ c, then a < c;

Proof. We will prove parts (a) and (d), leaving the others for
Exercise 1.10.

7However, it is not possible to define inequality on C and keep all of
these nice properties.
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Chapter 1. Mathematical Definitions

(a) We have a− a = 0 ∈ N0, so a ≤ a.
(d) Set d = b−a. Because a ≤ b, we must have d = b−a ∈
N0. Because b ≤ a, we must have −d = a−b ∈ N0. There is
only one element of N0 whose negative is also in N0, namely
0. Hence d = 0, so a = b.

Inequalities respect some of our arithmetic operations. This
is detailed in Theorem 1.11.

Theorem 1.11. Let a, b, c, d ∈ Z. Then

a. If a ≤ b then a+ c ≤ b+ c;
b. If a ≤ b and c ≥ 0, then ac ≤ bc;
c. If a ≤ b and c ≤ 0, then ac ≥ bc;
d. If a ≤ b and c < d, then a+ c < b+ d.

Proof. (b) Since a ≤ b, we must have b−a ∈ N0. Since c ∈ Z
and c ≥ 0, we have c ∈ N0. The product of two naturals is
natural, so (b−a)c ∈ N0. Expanding, we have bc−ac ∈ N0,
so ac ≤ bc.
The other parts are proved in Exercise 1.11.

Sometimes we combine inequalities. If we write a < b < c,
we mean that a < b AND b < c. Various combinations are
possible, such as a ≤ b < c or a ≤ b ≤ c. Note that we do
not write a < b > c, as this is confusing.
Theorem 1.12 gives some properties of inequality that are

special to Z. They will be particularly useful when we study
rounding functions.

Theorem 1.12. Let a, b ∈ Z. Then

a. If a < b, then a ≤ b− 1;
b. If a ≤ b < a+ 1, then a = b;

10



1.3. Some Important Definitions

c. If a− 1 < b ≤ a, then a = b.
d. If a− 1 < b < a+ 1, then a = b.

Proof. (a) Since a < b, we must have b− a ∈ N0. Since b−
a 6= 0, we must have b− a = k, for some k ∈ N. Subtracting
one from both sides, we have b−a−1 = k−1, so (b−1)−a =

k− 1 ∈ N0. Hence a ≤ b− 1.
(b) Since b < a + 1, we apply part (a) to conclude that
b ≤ (a + 1) − 1 = a. We combine a ≤ b with b ≤ a, using
Theorem 1.10.d. to conclude that a = b.
(c),(d) Exercise 1.15.

We now define some very useful rounding functions on R.

Definition 1.13. Let x ∈ R. Then there is a unique inte-
ger n such that n ≤ x < n + 1. We call n the floor of x,
and write n = bxc.

Definition 1.14. Let x ∈ R. Then there is a unique inte-
ger m such that m− 1 < x ≤ m. We call m the ceiling of
x, and write m = dxe.

The floor and ceiling of x are integers that straddle x. If
x is an integer, then x = bxc = dxe. If x is not an integer,
then bxc < x < dxe. For example, b3.9c = 3 = b3c. Also
b−2.9c = −3 = b−3c. Be careful, as you may be used to
rounding in some other way. Floor rounds to the next lower
integer, as ordered by ≤. It does not necessarily round to
the nearest integer, nor toward zero. Ceiling rounds in the
opposite direction from floor.

There is something to prove in Definitions 1.13 and 1.14.
Why should there be integers bxc and dxe with those proper-
ties? We think this ought to be true, based on our knowledge
of how the integers are spaced out among the reals, but that

11



Chapter 1. Mathematical Definitions

is not very persuasive. We will prove that such integers exist
and are unique later, in Theorem 6.17. For now, just take
this definition for granted as part of our entry point.

We close this chapter with some definitions very useful for
number theory.

Definition 1.15. Let m,n ∈ Z. We say that m divides n if
there exists some s ∈ Z such that ms = n. We can write
this compactly as m|n. If m does not divide n, we write
this compactly as m - n.

Note the category in Definition 1.15. “m|n” is the state-
ment “m divides n”, with verb “divides”. Contrast this with
m
n and m/n, which are are numbers (specifically, fractions).
In fact, “m|n” is a special kind of statement called a propo-
sition, which will be studied at length in Chapter 2.

Definition 1.16. Let n ∈ N with n ≥ 2. If there is some
a ∈ N such that 1 < a < n and a|n, then we call n com-
posite. If not, then we call n prime.

Note that the number 1 is neither prime nor composite;
it is a special kind of number called a unit8. One property
that a prime p must have is that if p|mn then p|m or p|n.
In the set of numbers N, Definition 1.16 and this property
coincide (i.e. any number that has one property must have
the other). In more advanced courses you may learn about
other types of numbers9, where these two properties no longer
coincide. What we call “prime” in Definition 1.16 will instead
be called “irreducible”, while the term “prime” is reserved for

8A unit is a number that divides 1. In Z there are just two units: −1
and 1.

9Sets of numbers, like Z, that admit addition, subtraction, multipli-
cation, but not necessarily division are called “rings”.
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1.4. Exercises

the property in the paragraph above. In this course we use
the terms interchangeably.

Definition 1.17. The factorial is a function from N0 to
N, denoted by !, as specified by: 0! = 1, 1! = 1, and n! =
(n− 1)! · n for n ≥ 2.

Note that 0! = 1. Some people don’t like this. There are
excellent reasons why we would want this to be true10, but
the most compelling reason is: People that use factorials want
it to be defined this way, and if you don’t like it then go make
your own function. If your function turns out to be useful or
better, it might catch on.

Definition 1.18. Let a, b ∈ N0 with a ≥ b. The binomial
coefficient is a function from such pairs a, b to N, denoted
by
(
a
b

)
, as specified by

(
a
b

)
= a!

b!(b−a)! .

Note that we need a ≥ b, or else (a− b)! isn’t defined11.

1.4 Exercises

Exercises for Section 1.1.

1.1. Carefully write down each of the numbered defini-
tions from this chapter (from all three sections). Deter-
mine the category and verb of each.

1.2. Carefully write definitions for the following terms.
Underline the category and verb in each.

a. pair of consecutive integers
b. perfect square

10For example, we need 0! = 1 to have the usual binomial theorem.
11In an advanced course you may encounter a broader definition of

binomial coefficients that are defined on a larger domain.

13



Chapter 1. Mathematical Definitions

c. perfect cube
d. perfect power
e. purely imaginary number

1.3. Find a mathematical definition from any other pub-
lished source, for a term that does not appear in this text.
Copy the definition carefully, and give the source where
you found it. Indicate the context (if any), category, and
verb.

Exercises for Section 1.2.

1.4. Prove that 6 is even and 7 is odd.

1.5. Apply Theorem 1.5 to a = −100, b = 3.

1.6. Let a, b be odd. Prove that a+ b is even.

1.7. Let a, b be odd. Prove that ab is odd.

1.8. Let a be even, and let b, c be odd. Prove that ab +

ac+ bc is odd.

1.9. Prove Theorem 1.7, by assuming n that is both odd
and even, and deriving a contradiction.

Exercises for Section 1.3.

1.10. Prove the unproved parts of Theorem 1.10.

1.11. Prove the unproved parts of Theorem 1.11.

1.12. Let a, b, c, d ∈ Z. Suppose that a ≤ b < c. Prove
that a+ d ≤ b+ d < c+ d.

1.13. Let a, b, c, a ′, b ′, c ′ ∈ Z. Suppose that a < b ≤ c and
a ′ < b ′ < c ′. Prove that a+ a ′ < b+ b ′ < c+ c ′.

1.14. Let a, b ∈ Z. Suppose that 0 ≤ a ≤ b. Prove that
0 ≤ a2 ≤ b2.
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1.15. Prove the unproved parts of Theorem 1.12.

1.16. Calculate ddπedπee− dπ2e.

1.17. Find x, y ∈ R such that x < y < 0 but dxe > byc.

1.18. Suppose that x ∈ R. Prove that if bxc = dxe, then
x ∈ Z.

1.19. Suppose that a|b and c ∈ Z. Prove that a|(bc).

1.20. Suppose that a|b and b|c. Prove that a|c.

1.21. Suppose that a|b and a|c. Prove that a|(b+ c).

1.22. For each of the following numbers, classify as prime,
composite, both, or neither: 6, 5, π, 1, 0,−1,−5,−6. Be
sure to justify your answers.

1.23. Suppose that p is prime. Prove that p2 is composite.

1.24. Calculate (d9.9e)!
(b9.9c)! .

1.25. For arbitrary n ∈ N, calculate and simplify (n+2)!
n! .

1.26. Let a, b ∈ N0 with a ≥ b. Prove that
(
a
0

)
=
(
a
a

)
= 1,

and that
(
a
b

)
=
(
a
a−b

)
.

1.27. Let a, b ∈ N0 with a ≥ b. Prove that
(
a
b

)
+
(
a
b+1

)
=(

a+1
b

)
.
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