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Abstract

Metagenomics had been established as a major tool for the description of microbial 
and viral communities. The shear magnitude of data generated in each metagenome makes 
identifying key difference in the function and taxonomy between communities difficult to 
elucidate. Here were present 7 statistical analyses that could be used to compare and contrast 
the metabolic functions of microbes (or viruses) within and between 10 environments. 
Random forests provided a robust and enlightening description of both the clustering of 
metagenomes and the metabolic processes that were important in separating microbial 
communities from different environments. All analysis identified that the presence of phages 
genes within the microbial community was a predictor whether the microbial community was 
host associated or free living. Genes that are contributed by phage are a key contributors to 
the success of microbes invasion and survival within a eukaryotic host.

Introduction

Vast communities of microbes occupy every environment, consuming and producing 
compounds that shape the local geochemistry. Over the last several years sequence based 
approaches have been developed for the large-scale analysis of microbial communities. This 
technique, typically called metagenomics, involves extracting and sequencing the DNA en 
masse, and then using high performance computational analysis to associate function with 
sequence.

Most of the focus in metagenomics has been on single environments such as coral 
atolls1,2, cow intestines3, ocean water4, and microbiolites5. Early work compared extremely 
different environments, like soil and water6. More recently, the Human Microbiome Project 
has expanded our understanding of the microbes inhabiting our own bodies, comparing 
samples from the same site among and between individuals7-9. Previously, we demonstrated 
that analysis of functional diversity in metagenomes could differentiate the microbial 
processes occurring in multiple environments10. That study utilized the only publicly 
available metagenomes at that time: 45 microbial samples and 32 viral samples. The raw 
DNA sequences were compared to the SEED subsystems11, and the normalized counts of the 
number of sequences in each subsystem in each metagenome were used as the input. That 
provided a raw data set with 23 response variables and 82 observations or samples. In that 
first study, a canonical discriminant analysis was used to separate the important metabolisms 
occurring in each metagenome. Subsequently, an analysis of the nucleotide composition of 
metagenomes used a principal components analysis to discriminate different environments. 
That work showed that dinucleotide frequency was preferred over other orders (tri-, tetra-, 
etc). Dinucleotide abundances provide 16 variables that were used to separate 86 samples12.
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There are a wide range of statistical tools that can be applied to multivariate data like 
metagenomes, however different tools provide different information and vary in their 
strengths and weaknesses. Here we provide an overview of different statistical techniques that 
can be used to compare and contrast metagenomes from different environments, and to 
discover how functional groups can differentiate between and within environments. We 
briefly introduce each statistical method and describe its ability to separate metagenomes 
across environmental space. This analysis recapitulated the discriminating power of 
metagenomes to identify differences in functional potential both between and within 
environments. A unique signature represented each environment: for example, the abundance 
of phage proteins was the major discriminator between host-associated microbial 
environments and free-living microbes. Subtle differences between open and coastal marine 
environments were associated with differences in the abundance of photosynthetic proteins. 
Cofactors, vitamins, and stress related proteins were consistently found in higher abundance 
in environments where the conditions for microbial survival were potentially unstable, such 
as hydrothermal springs. Each of these differences provides a clue for detailed 
microbiological analysis of communities.

Results
At the time of analysis, 212 metagenomes were selected from the set of publicly available 

data. They were classified as coming from ten different environments. The annotations 
provided composition data for 27 different functional groupings (subsystems). All of the raw 
data used in this study is provided as Supplemental Online Material and maybe downloaded 
from http://edwards.sdsu.edu/research/REU2009SupplementalMaterial/. In any statistical 
analysis it is important to keep the number of response variables less than the number of 
observations to ensure support for the conclusions that are made. In this study, we used ten 
classifications (the environments), 27 response variables (the functional groups), and 212 
observations (the metagenomes). 

Common statistical techniques were used to explore the relationship between the 
metagenomes, environments, and subsystems (Supplementary Fig. 1). In general, statistical 
methods can be divided into two broad categories: supervised techniques and unsupervised 
techniques. Supervised techniques require that the samples be separated into predetermined 
groups before the analysis begins, and those groups are used as part of the analytical methods. 
In this case, the metagenome samples were grouped according to the environment where the 
sample was collected. In contrast, unsupervised techniques do not require a priori knowledge 
of the group separations, but the groups are generated by the statistical technique.  In the 
unsupervised cases we compare the resultant groups to the original sampled environment. 

When categorizing data, many statistical methods are prone to over-fitting the data – 
reading more into the data than is really there. In general, increasing the size of the data sets, 
using similar group sizes to even out the distribution of the data, and limiting the number of 
groups to be much less than the number of variables avoids over-fitting the data. Sample size 
considerations are particularly relevant to metagenomic data analysis, due to the nature of the 
data. There are thousands of proteins identified in each metagenome, but at the time of 
analysis there were less than 300 publicly available samples, meaning that there were many 
less samples than potential variables.  Combining the proteins into functional groupings 
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reduces the number of variables to be less than the number of samples available (subsystems 
were used here, but other groups like COGs are also widely used for metagenome analysis13). 

We begin by assessing the clustering of the metagenomes, and test whether the clusters 
chosen to reflect the environmental signals are statistically supported (K-means, decision 
trees, and random forests). We then move on to methods to explore and visualize the 
underlying structure of the data (multi-dimensional scaling, linear discriminant, principal 
components, and canonical discriminant analysis). Obviously statistical analysis is not a 
linear process, and many of the techniques were influenced by the results from previous (or 
subsequent) analysis. Although this discussion attempts to maintain a linear structure for 
readability, that is not always possible or appropriate. Detailed methods and source code for 
all of these operations are given in the Supplemental Online Material.

K-means Clustering

The most straightforward method to cluster the data is grouping the data into related sets. 
K-means clustering aims to classify observations into K groups by partitioning observations 
into clusters in order to minimize the sum of squared distances from each observation to the 
mean of its assigned group. The K-means algorithm starts by randomly selecting a specified 
number of means and groups observations by assigning each one to the mean it is closest to in 
distance. The group means are then recalculated using the observations, replacing the 
previous means. The observations are reassigned to a group based on the distance between 
the value and the mean of the group. The algorithm iterates until the groups stabilize. The 
algorithm will converge to a local minimum, but not necessarily to a global minimum, 
therefore it is necessary to initialize and run the analysis many times. 

Varying the number of groups (K) will result in different solutions to the K-means 
algorithm. The sum of squares in general decreases as K increases, since the larger the 
number of groups the more choices are available when assigning an observation to a group, 
hence a better fitting choice can typically be found. For this reason, selecting K with the 
smallest sum of squares over fits the data. In fact, when K is the number of observations or 
more, each observation will form a group by itself and the sum of squares will be 0, but this 
does not give any useful information about the data. A plot of the sum of squares versus 
values of K is useful for determining an optimal value of K (Supplemental Fig. 2a).  K is 
often selected where the plot has an “elbow” (a steep drop at a specific K followed by a 
gradual decline towards zero). However, with metagenomic data, it was not unusual for the 
plot to appear rounded rather than have a single unique elbow (Supplemental Fig. 2a). 
Therefore, an alternative optimization using silhouettes14 was used. Ideally, each observation 
is much closer to the mean of its group than to the mean of any other group. The silhouette of 
an observation is the difference between its distance from the closest of the K means and the 
second closest, divided by its distance from the second closest mean. In the best possible 
case, the observation is close to its own mean and not very close to the second best mean, i.e. 
its silhouette is close to 1. The set of all silhouettes (one for each observation) for K from 1 to 
10 is shown in  Supplemental Fig. 2b. For each value of K we calculate the average 
silhouette width, and use K that optimizes the width of the silhouettes. We found a maximum 
at K=6, with another smaller optimal width with K=10 (Supplemental Fig. 2c).

The K-means algorithm was most useful for identifying outliers, which could  be removed 
from future analysis as required. K=6 groups, identified two broad categories, 1) the aquatic 
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group cluster  and 2) the human, terrestrial animal associated and mat community cluster 
(Supplemental Table 1). The remaining four groups were small and consisted of outliers. 
Therefore, the K-means showed broad patterns in the data.

Classification Trees
Decision trees can be used to group microbes that show similar metabolic functions. A 

supervised decision tree constructs a classification tree by identifying variables and decision 
rules that best distinguish between predefined classes (supervised). If the response variable is 
continuous, instead of predefined classes, a regression tree can be constructed which predicts 
the average value of the response variable. Since our data has predefined classes, we will only 
consider classification trees for the analysis. Trees are invariant under monotonic 
transformations of the predictor variables because constructing a tree uses binary partitions of 
the data and thus most variable scaling is unnecessary.

The construction of a supervised tree attempts to minimize the mixing of the different 
predefined classes within a leaf (called the node impurity). At each branching point, the 
algorithm chooses a single variable and a value of this variable which splits the node so that 
the impurity is minimized. There are several criteria for measuring the impurity of a node, 
such as the Gini index  (described below in the section on random forests), the twoing 
criterion (splitting the classes into two groups and calculating the mixing of the groups), the 
deviance (the likelihood of each split), or the misclassification rate (based on a known 
classification)15-18. In general, trees are a balance between classification strength and model 
complexity with the overall goal of maximizing prediction strength and minimizing over-
fitting. Often a large tree is grown that over fits the data, and pruning and cross validation are 
used to select the most appropriate subtree of that original tree16.

To cross validate a tree, the data set is divided into k randomly selected groups of near 
equal size. A large tree is built using the data points in only k−1 groups and pruned to give a 
sequence of subtrees. The tree and subtrees are used to predict the classes of the remaining 
data points, and these predictions are compared against the actual classes of those data points. 
The misclassification rate and the cross-validated deviance estimate are computed for each 
tree, and the process is repeated for each group. This k-fold cross-validation procedure16 is 
typically repeated many times, so that different subsets are selected in each trial. The 
misclassification and deviance values for each tree size are averaged over the repetitions, and 
the subtree that minimized the standard error in the misclassification rate or the lowest 
average deviance is selected. Trees constructed using cross-validation tools are typically less 
susceptible to over fitting than other forms of classification. K-fold cross validation is 
particularly appropriate for metagenomic data where there may be few samples in each 
environmental group and as many samples as possible should be used to identify the right 
tree.  

Unlike K-means clustering, decision tree classification provides information about the 
variables that drive the separation. The best classification tree using all the variables was 
determined by 500 runs of 10-fold cross-validation, which selected a nine-leafed tree. This 
classification tree (Fig. 1) demonstrated that phage proteins separated the host associated 
microbial communities and the majority of free-living communities. In particular, and as has 
been shown before13,19, the host associated communities and some microbial communities 
from the fresh water and hypersaline environment characteristically had more phage proteins. 

5



Harsh environments (such as hypersaline aquatic environments) had more co-factors, 
vitamins and pigments. Within the marine realm, the coastal and deep water samples had, as 
expected, fewer photosynthetic proteins than the open water samples, but the photosynthetic 
potential of the reefs was mixed, as seen before2. Photosynthetic potential also aided the 
identification of stratification in the mat microbial communities by depth, a separation that 
was supported by metabolism that occurs in microaerobic or anoxic conditions.

Random Forests
While decision trees are useful classification tools, they lack robustness: small changes in 

the data, such as adding one more sample, can yield dramatically different results. The 
random forests20 technique generates a large ensemble of trees, by choosing a random subset 
of the original data with replacement (bootstrapping), and using a user-defined number of 
variables selected at random from all of the variables at each node splitting.  The resulting 
ensemble of trees (the random forest) is then used with a majority voting rule to decide which 
metagenomes belong to which groups. The computation is not excessive: a random forest 
with one thousand trees trained on two hundred metagenome datasets was computed in a few 
seconds. The random forest is typically used to separate data into predefined groups (a 
supervised random forest). A subset of the data and variables is used to generate the trees, 
and thus the approach can predict the environment to which a metagenome belongs. The 
random forest does not produce branching rules like a single classification tree because the 
trees in the random forest all differ from one another. 

Sampling the data with replacement generates a new dataset to grow each tree in the 
forest – a process called bagging (bootstrap aggregating). The metagenomes that are chosen 
at least once during the sampling process are considered in-bag for the resulting tree, while 
the remaining metagenomes are considered out-of-bag (OOB). Upon mature growth of the 
forest, each metagenome will be out-of-bag for a subset of the trees: that subset is used to 
predict the class of the metagenome. If the predicted class does not match the original given 
class, the OOB error is increased20. A low OOB error means the forest is a strong predictor of 
the environments that the metagenomes come from. Misclassifications contributing to the 
OOB errors are displayed in a confusion matrix. The rows in the confusion matrix represent 
the classes of the metagenomes and the columns represent the classes predicted by the subsets 
of the trees for which each metagenome was OOB. Each class error, weighted for class size, 
contributes to the single OOB error (Supplemental Table 2 ). The OOB error and a 
confusion matrix are used to judge the misclassification error and clarify where the errors 
occur, while the variable importance measure allows for identifying which variables are best 
at discriminating among groups.

In an unsupervised random forest, the metagenome data is classified without a priori  
class specifications. Synthetic classes are generated randomly and the trees are grown. 
Despite synthetic classes, similar metagenomes will end up in the same leaves of trees due to 
the tree branching process, and the proximity of two metagenomes is measured by the number 
of times they appear on the same leaf. The proximity is normalized so that a metagenome has 
proximity of one with itself and 1−proximity is a dissimilarity measure21. The strength of the 
clustering detected this way may be measured by a “partitioning around the medoids” (PAM) 
analysis22. Conceptually similar to the K-means clustering described above, PAM picks K 
metagenomes called medoids, then creates clusters around them by assigning each 
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metagenome to whichever medoid it is closest to using the dissimilarity measure above as a 
kind of distance. The algorithm looks for whichever K metagenomes minimize the sum of the 
distances between all metagenomes and their assigned medoids. The result can be visualized 
using a multi-dimensional scaling (MDS; see below) plot. 

For a supervised random forest, variable importance measures such as mean decrease in 
accuracy and mean decrease in the Gini coefficient also provide biological insight 
(Supplemental Fig. 4). These two values indicate which variables contributed the most to 
generating strong trees. These can then be used to generate single trees with branching rules 
or used in other visualization analysis such as canonical discriminant analyses (CDA; see 
below, where we use mean decrease in Gini in the CDA). 

The mean decrease in accuracy that a variable causes is determined during the OOB error 
calculation phase. The values of a particular variable are randomly permuted among the set of 
out-of-bag metagenomes. Then the OOB error is computed again. The more the accuracy of 
the random forest decreases due to the permutation of values of this variable, the more 
important the variable is deemed20. The mean decrease in Gini coefficient is a measure of 
how each variable contributes to the homogeneity of the nodes and leaves in the resulting 
random forest17. Each time a particular variable is used to split a node, the Gini coefficients 
for the child nodes are calculated and compared to that of the original node. The Gini 
coefficient is a measure of homogeneity from 0 (homogeneous) to 1 (heterogeneous). The 
decreases in Gini are summed for each variable and normalized at the end of the calculation. 
Variables that split nodes into nodes with higher purity have a higher decrease in Gini 
coefficient. 

Overall, the photosynthesis and phage groups were the most important in separating the 
data sets, and a break occurred between these two variables and the remaining variables, 
suggesting that just these two measures could be used to grossly classify the metagenomes 
(Supplemental Fig. 4). The next break appeared after the eighth variable in the mean 
decreasing accuracy plot. These eight variables were thus chosen for the CDA analysis 
described below. The misclassification rate of the random forest analysis was 31 % 
(Supplemental Table 3).

Multiple dimensional scaling

Multidimensional scaling directly scales objects based on the similarities or dissimilarities 
between them23. MDS tries to project the proximity measures of the metagenomes as 
determined by another technique, such as K-means, random forests, etc. to a lower-
dimensional Euclidean space. For the random forests, the similarity was measured as the 
number of times two metagenomes appeared on the same leaf in the trees, and the distance 
between two samples on the plot represents that value. The MDS plots are colored either by 
the five PAM groupings (Fig. 2a), or the ten predefined environments (Fig. 2b). In this 
analysis, the microbes from human and animal hosts separated from the other samples along 
the first dimension while the aquatic and mat communities separated along the second 
dimension. MDS can be used as a data reduction process as well as a visualization tool, since 
the values for each sample calculated for the plots can be used as variables in subsequent 
analyses.
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Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised statistical technique that aims to 
separate the data into groups based on hyperplanes and describe the differences between 
groups by a linear classification criterion that identifies decision boundaries between groups. 
The advantages of LDA are the ability to visualize the data and obtain a statistically robust 
analysis of the classification ability, while the disadvantages include the requirements for (i) 
normal distribution of the data, (ii) near even size of the groups, and (iii) a linear relationship 
between the datasets, all of which are unlikely with metagenomics data.

The LDA over all 27 functional group variables separated the data (Supplemental Fig. 
4), and showed that the human and terrestrial animal associated metagenomes separated from 
a cluster consisting of all of the aquatic samples except the hypersaline community. The mat 
samples separated distinctly from the other clusters. Leave one out cross-validation can be 
used to judge how well an LDA acts as a classifier for new data24. The LDA analysis 
performed worst of all the classification techniques, with an error rate of 0.36 (i.e. 36  % of 
the samples were misclassified). Most of the misclassified samples were from the marine 
environment that fell among the large aquatic cluster.

Principal Component Analysis

Principal component analysis (PCA) is a statistical technique that reduces the number of 
variables that account for most of the variance of the data. PCA selects linear combinations of 
the original variables sorted so that each accounts for as much of the sample variance as 
possible while being orthogonal to the previous ones. Such linear combinations of the 
variables are called the principal components. Obviously there are exactly as many principal 
components as original variables; 27 in our case. The goal of PCA is to explain as much of 
the variance as possible in the first few components. A plot with 27 variables is difficult to 
interpret, so we used the variables with the top eight largest variances for the analysis. There 
was a natural separation in the magnitude of the variances after eight variables. Figure 3 
shows a PCA plot with respect to the first two principal components that depicts each 
metagenome colored by its environment. 

The positioning of the data on the plane is strongly influenced by the number of 
sequences associated with DNA metabolism, cell division, and amino acid metabolism in one 
direction, and virulence and RNA metabolism in the other, with cofactor metabolism 
important in both directions. The metagenomes did not separate particularly well with this 
analysis, however  human and terrestrial animal associated samples clustered above aquatic 
samples. The first two dimensions of the PCA did not provide good resolution of the nuances 
within an environment, explaining only 38 % of the variance (compared to 91 % of the 
variance for the CDA, below). The inability of the first two dimensions of the PCA to explain 
the variance suggests that the variance in our data was inherently multi-dimensional.  A 
subset of the variable genes could be identified and analyzed by a PCA to increase resolution 
of the analysis; the random forests and CDA analysis provide non-biased methods of 
identifying those features. 
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Canonical Discriminant Analysis

Canonical Discriminant Analysis (CDA) is a dimension reduction statistical tool, similar 
to principal component analysis (PCA) and linear discriminant analysis (LDA). The most 
important aspect of the CDA is that, unlike PCA and LDA, it is used to separate data into 
preassigned categories, in this case the preassigned environments. Specifically, the algorithm 
finds one fewer axes than classes of data. The axes are uncorrelated linear functions that best 
separate the data classes. Like a supervised random forest, the goal of the CDA is to 
understand which variables are responsible for differentiating between the groups.

The CDA identifies variation between classes: the first canonical component is the linear 
combination of variables that has maximum multiple correlation with the classes25. The 
second canonical component is obtained by finding the linear combination uncorrelated with 
the first canonical variable that has the highest possible multiple correlation with the classes. 
The process is repeated until the maximum number of canonical components is obtained. 
Ideally, only the first two or three canonical components are needed to adequately separate 
distinct groupings. A fundamental difference between PCA and CDA is in the covariance 
matrix: in the former the covariance matrix displays the variance between individual samples, 
while in the latter it displays the variance between classes. The covariance matrix has to be 
full rank, which requires at least as many individual samples as variables. This analysis used 
212 samples and 27 variables. First, the unsupervised random forest (above) was used to 
identify the eight most important variables. Then CDA was used to identify the best linear 
combinations of these variables. To visualize the CDA the canonical scores of the data points 
were plotted along new axes (the canonical components), vectors represent the influence of 
each variable, and group centroids aid the visualization (Fig. 4).

CDA is efficient at separating preassigned classes, but to measure the accuracy of the 
assignments, a misclassification error was computed. There were no available error 
estimation functions for canonical discriminant analysis in R, so an analysis was devised 
operating on the leave-one-out principal like those described above: for a data set with n 
samples, the function completes n canonical discriminant analyses, each time leaving out a 
different sample. The canonical scores are computed for the left out sample by comparing the 
group to which it is closest with its preassigned class. That comparison is then used to 
compute a scale-invariant distance (the minimal Mahalanobis distance26) for each group. A 
slightly different approach based on bootstrapping and combining CDA with LDA was also 
developed and reported similar results. Code for both functions is provided in the 
Supplemental Online Material.

PCA dimension reduction uses a small number of orthogonal linear combinations of the 
variables to explain the variance of the data. CDA explained a large amount of the variance 
(91 %) compared with 38 % in the PCA, showing the importance of a key set of metabolic 
process occurs in each environment. However, CDA has two main drawbacks: (i) the 
metagenomes are placed into predefined groups and thus are subject to observer bias; and (ii) 
the canonical components are linear combinations that best separate the groups, so CDA is 
prone to over fitting.

 The CDA conducted on the data using the eight most important functional subsystems 
identified in the random forest analysis (Fig. 4) showed that the host associated microbial 
communities were separated from the other environments by the abundance of the phage and 
dormancy sequences. The length of the lines in the plot are proportional to the importance of 
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that variables in separating the data. The harsh hydrothermal springs were again associated 
with the need for co-factors while the photosynthetic potential of the microbes  provided 
separation between the coastal and open water metagenomes and reflects the reduced amount 
of primary production conducted by the microbes in the coastal areas and increased amount 
of photosynthesis conducted by the microbes in the open water regions of the ocean. 
Membrane transport, protein and nitrogen metabolism were also important in separating the 
aquatic and host-associated metagenomes, but to a lesser extent.

The misclassification rate of the CDA was 39.7 % when used with the eight most 
important variables identified by the random forest, but the misclassification rate increased to 
45 % when the eight variables with the largest variance were used (as with the PCA).

Discussion
Metagenomic data provides a wealth of information about the functional potential of 

microbial communities, but the vastness of the data makes it difficult to discern the patterns 
that are important discriminators. A range of clustering and classification techniques were 
applied to metagenomic data to analyze the data, and the multiple analyses conducted on the 
data demonstrated the stability of the metabolic profiles in describing the difference between 
environments. The results show that a mixture of methods provides the most effective 
analysis of the data: K-means was used to identify outliers, random forests to identify the 
most important variables, and either a classification tree or CDA to test the relevance of the 
environment to genomic content. 

Each of the analyses, except the PCA separated the microbial samples into three broad 
groups (based on the biomes from where they were isolated): the human and animal 
associated samples, the microbial mats, and the aquatic samples. The LDA provided little 
additional separation, but the combination of random forests and CDA demonstrated that 
phage activity is a major separator of host associated microbial communities and free-living 
or environmental microbial communities, suggesting that the phages are playing different 
ecological roles within each environment. In free-living microbial communities, phages are 
major predators and generally show similar diversity to their hosts. In host associated 
microbial communities, phages are more diverse suggesting that they may provide specific 
genes to increase host survival13. These techniques also showed that the mat communities 
separated from both the animal associated metagenomes and the aquatic samples because of 
the vitamin and co-factor metabolism, suggesting a role for secondary metabolism associated 
with growth in this extreme environment. The dominant metabolism that separated the 
aquatic samples was photosynthesis: not surprisingly, samples from deep in the ocean, and 
some of the impacted reef sites, do not have much photosynthesis, while photosynthesis 
abounds at unaffected reefs and surface waters of the open ocean. Although only the one or 
two most abundant phenotypes in each sample were described here, the statistical analyses 
also reveal less obvious separations among the data, and unraveling the role of microbes in 
the global geobiology is an important goal for post-metagenomic studies. 

Any analysis of biological data must be informed by the underlying biological system(s) 
being analyzed, however the goal of statistical analysis is to highlight differences between 
samples whether or not we (currently) know how to explain them. Those differences that are 
statistically significant, yet lack a thorough or convincing biological explanation are to be 
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embraced as new avenues for research and those statistical techniques should not be merely 
dismissed as poor approaches27.

We hope that the statistical tools described here will help microbial ecologists understand 
their data in more detail, and help them parse out the important and interesting nuances that 
separate different environmental samples.
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Figure Captions

Fig. 1. A classification tree of the separation of metagenomes from different 
environments based on the abundance of the subsystems in each environment. The 
abundances are normalized as described in the supplemental methods. The tree has been 
pruned to only show the eight most important variables.

Fig. 2. Multiple dimensional scale plot of the distances calculated from the unsupervised 
random forest. The distances are the number of times the samples appear on the same leaf of 
the tree, and the MDS has scaled them so that they plot projects those distances into two 
dimensions. Colored by (a) the five PAM groupings suggested by the random forest (see 
text); or (b) the original environments the samples came from. 

Fig. 3. Principal component analysis of the 212 metagenomes using the top eight 
variables identified from the random forest analysis. The samples are colored and shaped by 
the environment where they came from. The samples are largely aligned on a 45° plane from 
virulence-DNA metabolism to amino acids-cofactors.

Fig. 4. Canonical discriminant analysis of the 212 metagenomes using the top eight 
variables identified from the random forest analysis. The plot shows the separation in the host 
associated microbial communities and the free living communities. The analysis explained 91 
% of the variance, suggesting that metagenomes can be discriminated by the metabolic 
potential. Line depict the h-plot of important metabolic processes and the points are the 
centroid or mean for the 10 environments.
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Dinsdale et al. Fig. 1
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Dinsdale et al. Fig. 2
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Dinsdale et al., Fig. 3
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Dinsdale et al. Fig. 4
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Supplemental Online Material

Detailed Methods

Metagenomes

Publicly available metagenomes were selected from the Edwards Lab metagenome 
database (http://edwards.sdsu.edu/mymgdb/) {Schmieder, Edwards, Unpublished}. All 
samples were annotated using the real-time K-mer based annotation system using a 10-amino 
acid word size and a requirement for at least two words per protein 
(http://edwards.sdsu.edu/rtmg). This approach, described elsewhere, {ref: Edwards, 
Overbeek, Disz, Olson} uses signature K-mers to identify the functions encoded in the 
metagenome sample. The K-mer based approach allows all of the samples to be annotated 
against the same core database, and for the annotations to be updated whenever required. The 
K-mer based annotation provides the number of sequences for each function, subsystem, and 
two level hierarchy in the subsystems ontology { PMID: 21421023 }. Counts were 
normalized by the total number of hits to account for the different sample sizes of each 
metagenomes and to yield percent composition by function. The functional hierarchies 
clustering-based subsystems and experimental subsystems were removed from the data, 
leaving 27 first level functional hierarchies or functional families. The metagenomes were 
classified as belonging to ten different environments: hypersaline; mat community (from 
Solar Salterns); hydrothermal springs; human associated; other terrestrial animal associated; 
freshwater; and marine. Because of the abundance of marine samples (for example, because 
of the Global Ocean Survey data), these samples were further sub-divided into four groups: 
open ocean, coastal water, deep water, and coral-reef associated samples. 
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Supplemental Online Figures and Tables

Supplemental Table 1. The samples present in each of the clustered identified by the K-
means analysis with K of six. This was chosen because the silhouette analysis suggested that 
six clusters were the most appropriate (Supplemental Fig. 2). There were 33 human, 9 
terrestrial animal, 10 mat community, 42 open water, 20 reef water, 60 coastal water, 5 deep 
water, 7 fresh water, 15 hypersaline, 6 hot spring samples in total.

Cluster Number of 
metagenomes

Original metagenome classification

1 52 31 human
5 terrestrial animals
6 mat community
Water samples: 

• 4 open
• 3 reef
• 2 coastal
• 1 fresh

2 1 1 reef water sample

3 1 1 reef water sample

4 3 1 human
1 fresh water
1 reef water

5 149 4 mat
4 terrestrial animals
1 human
Water samples: 

• 56 coastal
• 5 deep
• 15 hypersaline
• 6 spring
• 38 open
• 13 reef
• 7 fresh

6 6 Water samples:
• 2 coastal
• 3 fresh
• 1 reef
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Supplementary Table 2: Tree size and average deviance from a series of tree cross-
validation experiments.

Tree Size Average CV Deviance

1 152.014

2 122.432

3 102.636

4 99.642

6 92.762

8 92.970

9 92.812

14 95.848

16 98.342

17 98.622
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Supplemttaty Table 3. The group that each metagenome was assigned to by the random 
forest analysis.

Initial 
classification

Classification from the random forest

Mixed 
marine

Deep

water

Coastal

marine

Open 
marine

Spring

water

Terrestrial

animals

Human

associated

Fresh 
water

Hyper-
saline

Freshwater 3 1 1

Open marine 6 1 1 31 2

Spring water 1 5

Coastal marine 6 1 43 8 2

Terrestrial 
animal

5 cow 

2 mice

3  mice 

1 fish

Human 
associated

1 1 32

Mat 
community

4 1 4

Deep marine 4 1

Reef water 4 1 15

hypersaline 4 1 9

Total 29 8 47 44 8 8 36 10 11
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Supplementary Table 4. The missclassification table generated by the canonical discrimant 
analysis. 

coastal deep fresh human hypersaline mat open reef spring Terrestrial 
animal

Class 
error

coastal 9.820 0.000 0.301 0.391 0.000 0.226 0.962 0.009 0.127 0.160 0.181

deep 0.990 0.004 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.995

fresh 0.816 0.000 0.433 0.231 0.000 0.235 0.081 0.028 0.160 0.075 0.783

human 0.000 0.000 0.207 6.268 0.000 0.457 0.014 0.051 0.000 0.000 0.104

hypersaline 1.231 0.000 0.000 0.000 1.485 0.000 0.283 0.000 0.000 0.000 0.504

mat 
community

0.382 0.000 0.000 0.004 0.000 1.613 0.000 0.000 0.000 0.000 0.193

open 4.377 0.009 0.033 0.448 0.169 0.349 2.410 0.169 0.014 0.018 0.698

reef 1.509 0.009 0.283 0.429 0.000 0.226 1.117 0.235 0.023 0.377 0.994

spring 0.047 0.000 0.000 0.000 0.000 0.000 0.113 0.004 0.834 0.000 0.165

terrestrial 0.287 0.000 0.108 1.193 0.000 0.216 0.000 0.000 0.000 0.193 0.903
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Supplemental Figure 1. A diagram of the relationship between the seven statistical 
methods evaluated. 
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Supplemental Fig. 2. (a) The sums of squares and K-value used to identify the number of 
groups that the samples should be split into. No clear elbow was evident, therefore silhouette 
plots were use to examine the data. (b) A silhouette plot showing how it creates metagenomic 
groups in the data. The most favorable grouping number is where the average silhouette 
width is nearest to one. (c) The variation of average silhouette width and K. There is a peak at 
K=6 and an uptick at K=10.

A) C)

B)
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Supplemental Fig. 3 Mean decrease in (a) accuracy and (b) Gini determined by the 
random forest analysis for the variables.
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Supplemental Fig. 4. Linear discriminant analysis of the environmental samples.
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