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Abstract

The one-lie Rényi-Ulam liar game is a 2-player perfect information zero sum1

game, lasting q rounds, on the set [n] := {1, . . . , n}. In each round Paul chooses2

a subset A ⊆ [n] and Carole either assigns one lie to each element of A or to3

each element of [n] \ A. Paul wins the original (resp. pathological) game if4

after q rounds there is at most one (resp. at least one) element with one or5

fewer lies. We exhibit a simple, unified, optimal strategy for Paul to follow in6

both games, and use this to determine which player can win for all q, n and7

for both games.8
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1 Introduction9

The Rényi-Ulam liar game and its many variations have a long and beautiful10

history, which began in [1,2] and is surveyed in [3]. The players Paul and11

Carole play a q-round game on a set of n elements, [n] := {1, . . . , n}. Each12

round, Paul splits the set of elements by choosing a question set A ⊆ [n];13

Carole then completes the round by answering “yes” or “no”. This assigns14

one lie either to each of the elements of A, or to each of the elements of [n]\A.15

A given element is removed from play if it accumulates more than k lies, for16

some predetermined k. In choosing the question set A, we may consider the17

game to be restricted to the surviving elements, which have at most k lies.18

The game starts with each element having no associated lies. If after q rounds19

at most one element survives, Paul wins the original game; otherwise Carole20

wins. The dual pathological liar game, in which Paul wins whenever at least21

one element survives, has recently been explored in [4,5]. The original one-22

lie game corresponds to adaptive 1-error-correcting codes (introduced in [7]),23

while the pathological one-lie game corresponds to adaptive radius 1 covering24

codes. The original game with k = 1 was solved in [6], which contains a three-25

page algorithm for Paul’s strategy. We give a substantial simplification which26

not only provides an alternate solution to the original one-lie (k = 1) game,27

but also solves the pathological one-lie game.28

We represent a game state as (q,x), where x = (x0, x1), x0 denotes the number29

of elements with no lies, and x1 denotes the number of elements with one lie.30

We denote Paul’s question A by a = (a0, a1), where A contains a0 elements31

that currently have no lies and a1 elements that currently have a lie. Carole32

may then choose the successor state for the game, between (q − 1,y′) and33
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(q−1,y′′), where y′ = (a0, a1−a0 +x0) (attaching a lie to elements of [n]\A)34

and y′′ = (x0 − a0, x1 − a1 + a0) (attaching a lie to elements of A).35

Following Berlekamp in [7], the weight function for q questions, wtq(x) =36

(q+1)x0 +x1, satisfies the relation wtq(x) = wtq−1(y
′)+wtq−1(y

′′), regardless37

of A. In the original game, Paul wants to decrease the weight as fast as possible;38

in the pathological game, Paul wants to keep the weight as high as possible.39

Since Carole is adversarial, Paul can do no better than choosing questions40

where the weight will divide in half. Hence, with q questions remaining, Carole41

has a winning strategy in the original (resp. pathological) game if the weight42

is greater (resp. less) than 2q. The converse is not true; since all states and43

weights must be integral, Paul might not be able to divide the weight in half44

and Carole would then be able to cross the 2q threshold.45

2 The Splitting Strategy46

Let (q,x) be a game state. We call it Paul-favorable if wtq(x) ≤ 2q (in the47

original game), or wtq(x) ≥ 2q (in the pathological game). Carole has a win-48

ning strategy from any state that is not Paul-favorable, by simply choosing49

the higher-weight (in the original game) or lower-weight (in the pathological50

game) state for her turns.51

For (q,x), let the splitting question A be a =


(x0

2
, bx1

2
c), 2|x0,

(x0+1
2

, dx1−q+1
2

e), 26 |x0.

52

We will show that this is the optimal question for Paul to ask, although it may53

not be legal because the game rules require 0 ≤ a ≤ x (coordinate-wise). Call54

Paul-favorable state (q,x) splitting if the splitting question is a legal question55
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for Paul to ask. For technical reasons, in the original game call a = (2, 0)56

the splitting question for the specific state (5, (3, 2)), which becomes splitting57

after this exception.58

Lemma 1 (q,x) is splitting if and only if at least one of the following holds:59

(1) x0 is even, or60

(2) x0 − x1 < wtq(x)+(3−q)(q+2)
q+1

(equivalently x1 > q − 3), or61

(3) (q,x) = (5, (3, 2)) (in the original game).62

PROOF. x is always splitting if x0 is even; otherwise, x is splitting if and63

only if x1 − q + 1 > −2, which gives x1 > q − 3. Multiplying by q + 2, then64

adding x0(q +1), yields x0(q +1)+x1(q +2) > (q− 3)(q +2)+x0(q +1). This65

is rearranged to x0(q + 1) + x1 + (3 − q)(q + 2) > (q + 1)(x0 − x1), which is66

equivalent to x0 − x1 < wtq(x)+(3−q)(q+2)
q+1

. Condition (3) is the technical special67

case of the splitting question. 268

Example 2 In the pathological game, consider (4,x) for x = (3, 1). We see69

that wt4(x) = 16 ≥ 24, so (4,x) is Paul-favorable. However, it is not splitting70

since x1 = 1 ≤ 4 − 3 = q − 3.71

This shows that Paul cannot always win from all Paul-favorable states. How-72

ever, we will show that Paul can always win from any splitting state by repeat-73

edly asking the splitting questions. Further, we will subsequently show that74

‘Paul-favorable but not splitting’ states do not arise after the first, optimal,75

question.76

In the original game, an excessive q spoils the splitting strategy. In this case,77

Paul can play the game as if q were smaller, and will have unused questions78

4



at the end. Therefore, in the original game we need not only wtq(x) ≤ 2q, but79

also wtq−1(x) > 2q−1. Reducing q in this way does not change a splitting state80

to a non-splitting state.81

Theorem 3 Let (q,x) be splitting. In the original game, assume also that82

wtq−1(x) > 2q−1. Let (q − 1,y) be the state after the splitting question and83

Carole’s response. Then wtq−1(y) = bwtq(x)/2c or dwtq(x)/2e, and the state84

(q − 1,y) must be splitting.85

PROOF. If x0 is even, then wtq−1(y
′) = q x0

2
+ x0

2
+ dx1

2
e = dx0(q+1)+x1

2
e =86

dwtq(x)/2e, and wtq−1(y
′′) = q x0

2
+ x0

2
+bx1

2
c = bx0(q+1)+x1

2
c = bwtq(x)/2c. If x087

is odd, then wtq−1(y
′) = q x0+1

2
+ x0−1

2
+ dx1−q+1

2
e = dx0(q+1)+x1

2
e = dwtq(x)/2e,88

and wtq−1(y
′′) = q x0−1

2
+ x0+1

2
+ x1 − dx1−q+1

2
e = bx0(q+1)+x1

2
c = bwtq(x)/2c.89

In the pathological game, because (q,x) is Paul-favorable, wtq(x) ≥ 2q and90

hence wtq−1(y) ≥ bwtq(x)/2c ≥ b2q/2c = 2q−1. In the original game, wtq−1(x) ≥91

2q−1 + 1, and hence wtq−1(y) ≥ bwtq(x)/2c = b(wtq−1(x) + x0)/2c ≥ 2q−2.92

To show that y is splitting, we will show that y0 − y1 < wtq−1(y)+(4−q)(q+1)

q
. For93

the pathological game, wtq−1(y) ≥ 2q−1 and for the original game, wtq−1(y) ≥94

2q−2. Therefore wtq−1(y)+(4−q)(q+1)

q
is greater than 1 for all q (except in the95

original game for q = 4, 5, 6, when it is greater than 0).96

We now calculate y0− y1 after the splitting question. If x0 is even, then either97

y0 − y1 = −bx1

2
c or y0 − y1 = −dx1

2
e; in either case y0 − y1 ≤ 0. If x0 is odd,98

then y0− y1 = −1−x1 + dx1−q+1
2

e = d−x1−q−1
2

e ≤ 0; or y0− y1 = 1−dx1−q+1
2

e.99

Because (q,x) is splitting, x1 − q + 1 > −2; hence y0 − y1 ≤ 1.100

Hence (q − 1,y) is splitting except possibly in the original game when x0 and101
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y0 are odd, y0 − y1 = 1, and 4 ≤ q ≤ 6. Since wtq−1(y) = (q + 1)y0 − 1,102

(q − 1, y) is splitting unless 1 ≥ (q+1)y0−1+(4−q)(q+1)
q

, which holds if and only if103

y0 ≤ q − 3. Thus we are only concerned about states (5, (3, 2)) and (q, (1, 0)).104

The former is splitting by definition; in the latter, Paul has won. 2105

We now apply this strategy to the original and pathological one-lie games. The106

initial states remaining to resolve are those that are Paul-favorable but not107

splitting. We show that the first question will settle things; either any first108

question will make the subsequent state not Paul-favorable, or the optimal109

first question will make the subsequent state splitting.110

Corollary 4 The original one-lie game is a win for Paul if and only if:111

(1) n ≤ 2q/(q + 1), for n even, or112

(2) n ≤ (2q − q + 1)/(q + 1), for n odd.113

PROOF. The initial state is (q,x) for x = (n, 0). If n is even, then the initial114

state is either splitting or not Paul-favorable, depending on whether Condition115

(1) holds. If n is odd and (2) fails, then regardless of Paul’s question the next116

state will not be Paul-favorable. If n is odd, (2) holds, and n+1 ≤ 2q/(q +1),117

then Paul adds an imaginary element to the set; he can win with this additional118

element and therefore can win without it. Otherwise, n + 1 > 2q/(q + 1).119

Although (q,x) is not splitting Paul can ask (n+1
2

, 0); in which case the next120

state (q−1,y) will have y = (n+1
2

, n−1
2

) or y = (n−1
2

, n+1
2

). We have wtq−1(y) ≤121

q n+1
2

+ n−1
2

= (q+1)n+(q−1)
2

≤ 2q−1, applying wtq(x) ≤ 2q − (q − 1). Because122

2q/(q + 1) − (2q − 5) > 0 for all q > 0 (a simple calculus exercise), in fact123

n+1 > 2q− 5 and hence n ≥ 2q− 5 and n−1
2

≥ q− 3 > (q− 1)− 3. Therefore,124

(q − 1,y) is splitting. 2125
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Corollary 5 The pathological one-lie game is a win for Paul if and only if:126

(1) n ≥ 2q/(q + 1), for n even, or127

(2) n ≥ (2q + q − 1)/(q + 1), for n odd.128

PROOF. The initial state is (q,x) for x = (n, 0). If n is even, then the initial129

state is either splitting or not Paul-favorable, depending on whether Condition130

(1) holds. If n is odd and (2) holds, then (q,x) is not splitting; however Paul can131

ask (n+1
2

, 0); in which case the next state (q − 1,y) will have y = (n+1
2

, n−1
2

)132

or y = (n−1
2

, n+1
2

). We have wtq−1(y) ≥ q n−1
2

+ n+1
2

= (q+1)n+(1−q)
2

≥ 2q−1,133

applying wtq(x) ≥ 2q + (q − 1). Because (2q + q − 1)/(q + 1) − (2q − 7) > 0134

for all q > 0 (a simple calculus exercise), in fact n > 2q − 7 and hence135

n−1
2

> (q − 1) − 3. Therefore, (q − 1,y) is splitting. If n is odd and (2) fails,136

then regardless of Paul’s question the next state will not be Paul-favorable. 2137
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