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A jump system is a set of lattice points satisfying a certain “two-step”
axiom. A Manhattan set is the convex hull of a two-dimensional jump system.
Taking multiple Manhattan sets, in layers, forms a three-dimensional object.
We determine under what conditions this object is, in turn, a jump system.

1. INTRODUCTION

A jump system is a collection of lattice points that obeys the simple
axiom below. They model both delta-matroids (hence matroids) and degree
sequences of subgraphs, and have been the object of recent interest [1, 2, 3,
5, 6, 7, 9]. For lattice points x, y, z, we say that z is a step from x toward
(in the direction of) y if |z − x| = 1 and |z − y| < |x− y|. We denote this
by x

y−→ z.

Definition 1.1. Let J be a set of lattice points. It is a jump system
if for all lattice points x, y, z where x

y−→ z, x, y ∈ J , and z /∈ J , then there
is a z′ ∈ J that satisfies z

y−→ z′.

Observe that translation of J , reflection in one or more axes, and swap-
ping coordinates will preserve the above definition. One-dimensional jump
systems are easy to characterize (no gaps of size greater than one). Two-
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dimensional jump systems have been characterized [7, 4]. The convex hull
of a two-dimensional jump system, in turn a jump system, is known [7]
to be what is called below a Manhattan set. Our main result is a charac-
terization of certain types of three-dimensional jump systems; specifically,
those that are laminated Manhattan sets.

2. MANHATTAN POLYGONS AND SETS

A Manhattan polygon is a convex polygon whose (nonempty set of) ver-
tices lie on the integer lattice, and whose (possibly empty set of) edges
each have slope one of {0, 1,−1,∞}. They are exactly integral bisubmod-
ular polyhedra of dimension two [2]. Pictured here are sixteen Manhattan
polygons exhibiting varying degrees of symmetry:

We now count how many shapes are possible, where the “shape” of a
Manhattan polygon is determined by which of the eight possible edges are
present. Starting with all eight corners, we may combine adjacent corners.
By this we mean juxtaposing those corners, losing the edge between them.
There is a single restriction to this process: if we combine four consecutive
corners, then the polygon flattens out, and the other four corners must also
be combined.

If we do combine four consecutive corners of the general shape this way,
two corners will remain, and the shape will be a line segment. In the table
below, this is denoted by 4 + 4, since the resulting shape has two corners,
each arising from four corners of the general shape. There are four such
line segments possible – horizontal, vertical, NE-SW, and NW-SE.

To count Manhattan triangles, we must create three corners out of eight,
which can only be done by merging three, three, and two corners of the
general shape into the corners of the triangle. The resulting isosceles tri-
angle can point in any of eight directions, and is denoted by 2 + 3 + 3 in
the table below.

Continuing this counting for one- four-, five-, six-, seven-, and eight-
cornered figures, we obtain all 144 possible shapes for Manhattan polygons:
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# Corners Combining Which Corners # Shapes
1 8 1
2 4+4 4
3 2+3+3 8
4 2+2+2+2, 3+2+2, 3+3 38
5 2+2+2, 3+2 56
6 2+2, 3 28
7 2 8
8 none 1

Manhattan polygons are similar to objects that others have investigated.
If we insisted that each edge contained no lattice points other than the
vertices, we would have a canonical polygon [10]. If, instead, we relaxed the
restriction on edge slopes, we would have a lattice polygon [8]. Manhattan
polygons are most closely related to the study of jump systems, because
the convex hull of a two-dimensional jump system is known to be precisely
a Manhattan polygon, and all Manhattan polygons arise this way.

We now define unit vectors N, S, E, W as e2,−e2, e1,−e1, respectively.
We define NE = N + E,NW = N + W,SE = S + E, SW = S + W .
The N face of a polygon is defined as those points x in the polygon max-
imizing NT x. Set MN to be this maximum. Other faces and Mi are
defined similarly. A Manhattan polygon has eight (not necessarily dis-
tinct) faces corresponding to the eight above-mentioned vectors. It also
has eight (not necessarily distinct) corners, corresponding to the intersec-
tion of two adjacent faces. For convenience, they will be denoted as the
NNE, ENE, SSE, ESE, SSW,WSW,NNW,WNW corners.

The N halfplane corresponding to a polygon is defined as those points
y in the plane such that NT y ≤ MN . The intersection of the eight half-
planes is exactly the polygon itself. Contrapositively, each point outside
the polygon must lie outside at least one halfplane.

A Manhattan set is a convex subset of the two-dimensional integer lattice
whose convex hull is a Manhattan polygon. Similarly, each Manhattan
polygon has an associated Manhattan set. It is known that all Manhattan
sets are jump systems, although not all two-dimensional jump systems arise
in this way.

We now consider three dimensional objects. While analogous three-
dimensional polytopes and sets can be defined, we instead consider more
general objects – laminated Manhattan sets. That is, we choose a pre-
ferred axis, from now on the Z axis. We consider a collection of Manhattan
sets in planes parallel to the X-Y plane, each corresponding to an integer
Z-value. These objects include all of the analogous three-dimensional Man-
hattan sets (which are all laminates of two-dimensional Manhattan sets)
and other three-dimensional objects as well.
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Our main result is a set of conditions under which a laminated Manhattan
set is a jump system. We first present a necessary weaker result, together
with machinery needed for the main result.

3. LAMINATED MANHATTAN SETS

Our first theorem concerns the case of two layers only. The proof is fairly
long, so we postpone it until the appendix.

Theorem 3.1. Let LMS = (MS1 × {1}) ∪ (MS2 × {2}) ⊆ Z2 × {1, 2},
where MS1, MS2 are Manhattan sets. Then the following conditions are
equivalent:

1.LMS is a jump system.
2.For each corner κ′ of MS1, the corresponding corner κ′′ of MS2 sat-

isfies |κ′ − κ′′| ≤ 1.

Observe that the eight restrictions imposed by the second condition are
not independent, because of the properties of the Manhattan sets. To il-
lustrate this, we consider the NNW,NNE, and ENE corners, denoted by
α′, α′′, β′, β′′, γ′, γ′′ respectively.

If β′ = β′′, then γ′ = γ′′ and α′ = α′′ +
{−1, 0, 1}W . If β′ = β′′ + N , then α′ =
α′′ + N and γ′ = γ′′ + {N,E}. If β′ =
β′′ + E, then α′ = α′′ + {−1, 0, 1}W and
γ′ = γ′′ + {N, E}.

The condition (2) implies the following weaker condition (2’).

2’. For each of the eight faces f , we have |M ′
f −M ′′

f | ≤ 1, where M ′
f ,M ′′

f

denotes the maximum of fT x on MS1,MS2, respectively.

We will extend this result from two layers to arbitrarily many layers.
But first we need the following definition.

Definition 3.1. A sequence of integers a1, a2, . . . , an is called grooved
tight unimodal (GTU) if for all possible i, the following hold:

1. |ai − ai+1| ≤ 1 (tight)
2. If any of ai+1, ai+2, . . . , an are greater than ai, then ai+1 = ai + 1.
3. If any of a1, a2, . . . , ai−1 are greater than ai, then ai−1 = ai + 1.
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This definition uniquely decomposes the sequence into three subsequences.
First is a (possibly empty) rising subsequence, where each term is one more
than the last. Then is a peak subsequence, where all terms are either equal
to the maximum of the sequence (M) or one less. Those that are one less
are called grooves and must be both immediately preceded and followed
by M terms. Finally comes a (possibly empty) falling subsequence, where
each term is one less than the previous. A picture of this structure follows.

rising peak falling

M

grooves

With this understanding we are ready to state our main result.

Theorem 3.2. Let LMS = (MS1×{1})∪ (MS2×{2})∪ · · · ∪ (MSn×
{n}) ⊆ Z2×{1, 2, . . . , n}, where MS1,MS2, . . . ,MSn are Manhattan sets.
Then LMS is a jump system if and only if the following conditions hold:

1.Each pair of consecutive layers, taken by themselves, forms a jump
system.

2.For each of the eight faces f , we have {M i
f} a GTU sequence, where

M i
f denotes the maximum of fT x on MSi.

Observe that the eight GTU re-
strictions are not independent.
For example, if MN increases and
MNW decreases from one layer to
the next, then the NNW corner
moves 3 units away, which is im-
possible by the first condition.

In fact, if MN (similarly ME , MS , MW ) changes, then MNW and MNE

must change the same way. If MNW (similarly MNE ,MSE ,MSW ) changes,
then MN and MW cannot change in the opposite direction.

Proof. First, we assume that LMS is a jump system. The first condition
must be true since the intersection of a jump system with a box is again
a jump system. Suppose that one of the faces f fails the GTU criterion.
It cannot fail the first part of the definition, because of Theorem 3.1. By
renumbering the Manhattan sets if necessary, we may assume without loss
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that it fails the second part of the definition. Further, by renumbering we
may even impose without loss that M1

f ≥ M2
f , but that M1

f < Mm
f for some

m > 2. Consider all x ∈ (MS1, 1) with fT x = M1
f , and all y ∈ (MSm,m)

with fT y = Mm
f . From these, choose x, y with |x−y|minimal. Let z be any

step from x toward y that is in the first layer and has fT z > fT x = M1
f .

Such a step must exist since fT z ≤ fT y = Mm
f . We note that z is not in

(MS1, 1), and that any step z′ from z toward y that is in (MS1, 1) would
violate the assumed minimality of |x − y|. The only possible other step
would be if z′ were in (MS2, 2), but we have fT z′ = fT z > M1

F ≥ M2
f , so

z′ /∈ (MS2, 2). This is a contradiction, so the GTU criterion must hold.
We now suppose that conditions (1) and (2) hold, but that LMS is not

a jump system. In that case, there must be some x
y−→ z, with x, y ∈ LMS,

but z /∈ LMS and further no second step will be in LMS. Observe that x, y
cannot be in the same or adjacent layers, by condition (1). By renumbering
the Manhattan sets if necessary, we assume without loss that x is in layer
1, and that y is in layer m for some m > 2.

By swapping coordinates and reflection, if necessary, we may assume
without loss that either z = x + E (any step in the same layer as x) or
z = x + e3. We shall treat these cases separately.

First, we consider the case of z = x + E. Suppose that z is outside the
E halfplane of MS1. We will show that z′ = z + e3 is in MS2. Because
x1 < y1, we must have M2

E > M1
E , hence z′ is in the E halfplane. This

also implies that M2
NE > M1

NE and M2
SE > M1

SE ; hence since x was in
those halfplanes of MS1, z′ must be in those halfplanes of MS2. In turn,
we also conclude that M2

N ≥ M1
N and M2

S ≥ M1
S , and again since x was

in those halfplanes in MS1, we must have z′ in those halfplanes of MS2.
Finally, since the MSW ,MNW ,MW are GTU sequences, they can decrease
by at most one between MS1 and MS2. Therefore, since x was in those
halfplanes in MS1, again z′ must be in those halfplanes in MS2. Hence, z′

is in all eight halfplanes of MS2 and hence in MS2.
Now, if z is not outside the E halfplane of MS1, we may assume without

loss (by reflection), that z is outside the NE halfplane rather than the
SE halfplane. Observe that since z is not outside the E halfplane, we
must have z′ = z + S ∈ MS1. If y2 < z2, then z′ is a step from z in
the direction of y, and x, y, z don’t contradict the jump system axiom.
Otherwise, y2 ≥ z2 = x2, and y1 > x1. Therefore, Mm

NE > M1
NE , and

hence M2
NE > M1

NE . We will now show that z′′ = z + e3 is in MS2.
Because z was just outside the NE halfplane of MS1, and M2

NE > M1
NE ,

z′′ is inside the NE halfplane of MS2. Because the MNE increased, MN

and ME cannot decrease. Since z was inside both N and E halfplanes in
MS1, z′′ is inside both in MS2. Because of x and z′, all the other five
halfplanes had z at least one unit deep within the border. Since they can
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only change by one unit, z′′ must still be inside these halfplanes in MS2.
Hence z′′ is in all eight halfplanes in MS2 and hence in MS2.

Now, we consider the case that z = x + e3. Consider the four points
z +E, z +S, z +W, z +N . We claim that none are in MS2. Suppose one of
them, z′, is in MS2. If z′ is in the direction of y, then x, y, z satisfies the
jump system axiom, contrary to hypothesis. If z′ is not in the direction
of y, then z is a step from z′ toward y, and we have a violation z′, y, z of
the jump system axiom where the step is in the same layer. This case has
been handled previously. Hence all four points are not in MS2, together
with z. They form a Manhattan set, disjoint from MS2, and hence are all
outside at least one of the halfplanes (say M2

A) of MS2, since both sets are
convex. Because MA forms a GTU sequence, |M1

A −M2
A| ≤ 1, and hence

x is outside M1
A, contradicting the hypothesis that x ∈ MS1.

4. APPENDIX

We now give the promised proof of Theorem 3.1. We repeat the theorem
here for convenience.

Theorem 3.1. Let LMS = (MS1 × {1}) ∪ (MS2 × {2}) ⊆ Z2 × {1, 2},
where MS1,MS2 are Manhattan sets. Then the following are equivalent:

1.LMS is a jump system.
2.For each corner κ′ of MS1, the corresponding corner κ′′ of MS2 sat-

isfies |κ′ − κ′′| ≤ 1.

Proof (1 → 2 in Theorem 3.1).
By symmetry, we assume without loss that κ′, κ′′ are the ENE corners

of MS1,MS2 respectively, and that |κ′ − κ′′| ≥ 2. The proof proceeds in
three cases, depending on the relationship of κ′′ to κ′, as depicted below.

Case 1 is when (κ′′)1 ≥ (κ′)1+2. Case
2 is when (κ′′)1 + (κ′′)2 ≥ (κ′)1 +
(κ′)2 + 2. Case 3 is very specific,
it is when (κ′′)1 = (κ′)1 + 1 and
(κ′)2 − 2 ≤ (κ′′)2 ≤ (κ′)2 − 1. With-
out loss of generality we may ignore
the other cases – by interchanging the
roles of κ′, κ′′, the picture is rotated
180◦ about the origin and case 1a is
mapped to case 1, etc.

(Case 1) Consider the step (κ′′, 2)
(κ′,1)−−−→ (κ′′, 1). Both (κ′′, 2) and (κ′, 1)

are in LMS. However, (κ′′, 1) is not, since (κ′, 1) is on the east face of that
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layer, and (κ′)1 ≤ (κ′′)1−2. Further, any possible step from (κ′′, 1) toward
(κ′, 1) must stay in that layer, and cannot change the first coordinate by
more than one. Therefore no second step can be in LMS, hence LMS
violates the jump system axiom.

(Case 2) Similarly, consider the step (κ′′, 2)
(κ′,1)−−−→ (κ′′, 1). Both (κ′′, 2)

and (κ′, 1) are in LMS. However, (κ′′, 1) is not, since (κ′, 1) is on the
northeast face of that layer, and (κ′)1 +(κ′)2 ≤ (κ′′)1 +(κ′′)2− 2. Further,
any possible step from (κ′′, 1) toward (κ′, 1) must stay in that layer, and
cannot change the sum of the coordinates by more than one. Therefore no
second step can be in LMS, hence LMS violates the jump system axiom.

(Case 3) Consider the step (κ′, 1)
(κ′′,2)−−−−→ (κ′+E, 1). This is not in LMS,

since (κ′, 1) was in the east face of MS1. Because the first coordinate of
(κ′ + E, 1) is the same as that of (κ′′, 2), the only possible second steps
are to (κ′ + E, 2) and (κ′ + E + S, 1). The first is not in LMS, because
(κ′ + E)1 + (κ′ + E)2 = (κ′)1 + (κ′)2 + 1 ≥ (κ′′)1 + (κ′′)2 + 1, but κ′′

is on the northeast face of MS2. The second is not in LMS, because
(κ′ + E + S)1 = (κ′)1 + 1, and κ′ is in the east face of MS1. Hence, no
second step can be in LMS, so LMS violates the jump system axiom.

Proof (2 → 1 in Theorem 3.1). Because LMS is not a jump sys-
tem, there must be a violation of the jump system axiom. This must
involve points from both layers, since otherwise a MS would violate the
jump system axiom. By relabeling and reflection if necessary, we as-

sume without loss of generality that the violation is (x, 1)
(y,2)−−−→ z̄. We

have (x, 1), (y, 2) ∈ LMS, but z̄ /∈ LMS. Furthermore, all possible steps

z̄
(y,2)−−−→ z̄′ have z̄′ /∈ LMS. Now z̄ can be one of five vectors. One of these

is z̄ = (x, 2). By reflection and coordinate-swapping if necessary, we can
without loss of generality reduce all four other possibilities to z̄ = (x+E, 1).

(Case 1) z̄ = (x, 2).
Because (x, 2) /∈ LMS, there must be at least one face of MS2 that x is
beyond. By reflection and coordinate-swapping if necessary, we can reduce
these eight cases to two. Either x is outside the E halfplane of MS2, or x
is outside the NE halfplane of MS2.

First suppose that x is outside the E halfplane of MS2. Let κ′, κ′′ be
the ENE corners of MS1,MS2, respectively. Because x is outside the E

halfplane, we have (x, 2)
(y,2)−−−→ (x−E, 2). This point too is not in LMS. If

this is still outside the E halfplane, then (κ′′)1 ≤ (x− E)1 − 1 = x1 − 2 ≤
(κ′)1 − 2, which violates our hypothesis. Otherwise, x − E is not outside
the E halfplane of MS2, but still outside MS2. Hence, without loss of
generality, it is outside the NE halfplane of MS2. We can get two equations
from these facts: (κ′′)1 = x1−1 ≤ (κ′)1−1, and (κ′′)2 ≤ x2−1 ≤ (κ′)2−1.
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Putting them together, we get |κ′ − κ′′| ≥ 2, which again violates our
hypothesis.

Hence, we must have that x is outside the NE halfplane of MS2, but in
the N and E halfplanes of MS2. We are assuming condition (2), and hence
the weaker condition (2’). Therefore, both z̄ +W and z̄ +S are in the NE
halfplane of MS2. Further, they are both in MS2, since z̄ is in the N and
E halfplanes of MS2. However, one of them must be in the direction of y,
violating our hypothesis that no second step is in LMS.

(Case 2) z̄ = (x + E, 1).

First we suppose that y2 = x2. We have z̄
(y,2)−−−→ (x + E, 2). Observe that

x + E is in the E,NE, SE,N, S halfplanes of MS2. However, it cannot
be in MS2, so it must be outside some halfplane. By reflection, we may
assume that it is either the W or NW halfplane. Let κ′, κ′′ be the WNW
corners of MS1,MS2, respectively. If x + E is outside the W halfplane,
then observe that (κ′)1 + 2 ≤ x1 + 2 = (x + E)1 + 1 ≤ (κ′′)1. If x + E is
outside the NW halfplane, then observe that −x1−1+x2 ≥ −κ′′1 +κ′′2 +1.
But since x is in the NW halfplane of MS1, we have −x1 +x2 ≤ −κ′1 +κ′2.
Combining, we have κ′′1 − κ′1 + κ′2 − κ′′2 ≥ 2, which violates our hypothesis.

We henceforth assume, without loss of generality, that y2 < x2. There-
fore, x+E must be outside the E or SE halfplane of MS1, since otherwise

it would be outside the NE halfplane and (x + E, 1)
(y,2)−−−→ (x + E + S)

would be in LMS and violate hypothesis.
Let κ′, κ′′ be the ESE corners of MS1,MS2 respectively. If x + E is

outside the SE halfplane of MS1, then (κ′)1 − (κ′)2 + 1 ≤ (x + E)1 −
(x + E)2 < y1 − y2 ≤ (κ′′)1 − (κ′′)2. In other words, (κ′)1 − (κ′)2 + 2 ≤
(κ′′)1 − (κ′′)2, which violates our hypothesis.

Hence we must have x + E outside the E halfplane of MS1. Hence,
(κ′)1 = x1. However, since (κ′′)1 ≥ y1 > x1, we must have κ′′ = κ′ + E.
Now we set η′, η′′ to be the ENE corners of MS1,MS2, respectively. We
know that (η′)1 +1 = (η′′)1. However, (η′′)2 < x2, since x+E /∈ MS2. But
(η′)2 ≥ x2, since x is in the E face of MS1. This violates our hypothesis.
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